background image

a





=

a



l



− ε



sin

α



( )

l



ω



( )



cos

α



( )

l



ε



sin

α



( )

l



ω



( )



cos

α



( )

:=

ε





=

ε



l



− ε



cos

α



( )

l



ω



( )



sin

α



( )

+





l



ω



( )



sin

α



( )

+

l



cos

α



( )

:=

:\]QDF]HQLHSU]\VSLHV]HRJQLZPHchanizmu

V





=

V



l



− ω



sin

α



( )

l



ω



sin

α



( )

:=

ω





=

ω



l



− ω



cos

α



( )

l



cos

α



( )

:=

:\]QDF]HQLHSU GNRFLRJQLZPHFKDQizmu 

α



 deg

=

α



angle cos

α

2



sin

α

2



,

(

)

:=

cos

α

2



s



l



cos

α



( )

l



:=

sin

α

2



l



sin

α



( )

l



:=

l



sin

α



( )

l



sin

α



( )

+



 

s





=

s





=

s



 l



cos

α



( )

+



:=

s

31

 l



cos

α



( )



:=



l



cos

α



( )

(

)





l



( )



l



( )







:=

ε





:=

ω





:=

α



 deg

:=

l





:=

l



0.12

:=

.,1(0$7<.$

background image

aS3y



=

aS3x



=

aS3y



:=

aS3x

a



:=

3U GNRüLSU]\VSLHV]HQLH URGNDPDV\RJQLZD

aS2y



=

aS2x



=

aS2y

l



ε



cos

α



( )

l



ω



( )



sin

α



( )

l





ε



cos

α



( )

ω



( )



sin

α



( )





+

:=

aS2x

l



− ε



sin

α



( )

l



ω



( )



cos

α



( )

l





ε



sin

α



( )

ω



( )



cos

α



( )

+





:=

VS2y



=

VS2x



=

VS2y

l



ω



cos

α



( )

l



ω



cos

α



( )



+

:=

VS2x

l



− ω



sin

α



( )

l



ω



sin

α



( )



:=

3U GNRüLSU]\VSLHV]HQLH URGNDPDV\RJQLZD

aS1y



=

aS1x



=

aS1y

l





ε



cos

α



( )

ω



( )



sin

α



( )





:=

aS1x

l





ε



sin

α



( )

ω



( )



cos

α



( )

+





:=

VS1y



=

VS1x



=

VS1y

l



ω



cos

α



( )



:=

VS1x

l



− ω



sin

α



( )



:=

3U GNRüLSU]\VSLHV]HQLH URGNDPDV\RJQLZD

:\]QDF]HQLHSU  GNRFLLSU]\VSLHV]H URGNyZPDVRJQLZ

background image

Pbx

2



=

Pby

2



=

Pbx

3

aS3x

m



:=

Pby

3

aS3y

m



:=

Pbx

3



=

Pby

3



=

F



:=

rxBS



l



cos

α



( )



:=

ryBS



l



sin

α



( )



:=

rxBS





=

ryBS





=

rxBC

l



cos

α



( )

:=

ryBC

l



sin

α



( )

:=

rxBC



=

ryBC



=

rxBS



l



cos



α



+

(

)



:=

ryBS



l



sin



α



+

(

)



:=

rxBS





=

ryBS





=

rxBA

l



cos



α



+

(

)

:=

ryBA

l



sin



α



+

(

)

:=

rxBA



=

ryBA



=

.,1(7267$7<.$

m





:=

m





:=

m





:=

g



:=

J





:=

J





:=

G



g

m



:=

G



g

m



:=

G



g

m



:=

G





=

G





=

G





=

Mb

1

ε



J



:=

Mb

2

ε



J



:=

Mb

1



=

Mb

2



=

Pbx

1

aS1x

m



:=

Pby

1

aS1y

m



:=

Pbx

1



=

Pby

1



=

Pbx

2

aS2x

m



:=

Pby



aS2y

m



:=

background image

Mnap



=

Mnap

M1

M2

+

ω



:=

M2

Pbx



(

)

VS1x

Pby



G



+

(

)

VS1y

+

Pbx



(

)

VS2x

Pby



G



+

(

)

VS2y

+





+

Pbx



(

)

V



+





:=

M1

F V



Mb



ω



+

Mb



ω



+

(

)

:=

WYZNACZENIE MOMENTU NAPEDOWGO M

n

 W OPARCIU O BILANS 

MOCY MECHANIZMU

Find Rx23 Ry23

,

R43

,

Rx12

,

Ry12

,

Rx41

,

Ry41

,

Mn

,

(

)





















=

Mb



rxBS



Pby



G



+

(

)

+

ryBS



Pbx



(

)

rxBA Ry41

(

)

+

ryBA Rx41

(

)

Mn

+



 

Ry12

Ry41

+

Pby

1

+

G



+



 

Rx12

Rx41

+

Pbx

1

+



 

Mb



rxBS



Pby



G



+

(

)

+

ryBS



Pbx



(

)

rxBC

Ry23

(

)

+

ryBC

Rx23

(

)



 

Ry23

Ry12

+

Pby



+

G



+



 

Rx23

Rx12

+

Pbx



+



 

Ry23

G



+

R43

+



 

Rx23

Pbx



+

F

+



 

Given

Mn



:=

Ry12



:=

Ry41



:=

Rx41



:=

Rx12



:=

R43



:=

Ry23



:=

Rx23



:=