background image

Physics teacher support material

Investigation 8

The mass per unit length of a wire measured 

by two different methods.

The aim of this experiment is to compare the experimental values from two different methods of 

determining the value the mass (m) per unit length (L) of a wire, where 

µ

m

L

.

The first method determines a value by direct measures of mass and length. In this case, I 
measured the mass of the wire as 

± ∆= 0.0026 ± 0.0005

(

)

kg  with a top pan balance and the 

length of the wire as 

± ∆= 1.710 ± 0.002

(

)

m  with a metre rule. 

The first method yields a value of 

µ

One

m

L

= 0.0026kg

1.710m

= 1.52× 10

−3

kgm

−1

. The uncertainty in 

this is about  ∆

µ

One

= ± 0.3 × 10

−3

kgm

−1

.

The second method is based on the variation of the speed v of a wave in the wire with the 
tension T in the wire. The equipment is set up as shown in the sketch. 

© International Baccalaureate Organization 2007  



background image

Physics teacher support material
Investigation 8

For a given load, the length of the wire is adjusted until it vibrates in its fundamental modes (first 

harmonic). Theory tells us that the frequency f, length L, the speed v, and mass per unit length 

µ

are related as follows: 

v

2L

=

T

µ

2L

Ÿ T

µ

= 2 L f Ÿ = 2

µ

f L Ÿ = 4

µ

f

2

2

The slope of a graph of tension T against length squared  L

2

 is  4

µ

f

2

 for the first harmonic. 

Hence

µ

Two

= slope

f

2

The raw data collect from the experiment is listed here. 

 

1

st

 Harmonic 

Load (kg) ±0.001 kg 

(m) ±0.02m 

1.000 

0.42 

1.500 

0.58 

2.000 

0.61 

2.500 

0.70 

3.000 

0.79 

By using the above formulas I calculated the following information based on the raw data. 

Tension (N) ±0.01N 

L

2

 ±0.05m 

9.8 

0.18 

14.7 

0.34 

19.6 

0.37 

24.5 

0.49 

29.4 

0.62 

2  

© International Baccalaureate Organization 2007

background image

Physics teacher support material

Investigation 8

Graph of Tension against the Square of the Length for the First harmonic. 

The slope here is given as  46.13N m

−2

. Hence 

µ

Two

= slope

4

f

2

= 1.2 × 10

−3

kgm

−1

.

My conclusion is tabulated in the table shown here. 

Method One 

µ

One

1.5 ± 0.3

(

)

× 10

−3

kgm

−1

Method Two 

µ

Two

1.2 × 10

−3

kgm

−1

As we can see the values of 

µ

 for both methods are nearly the same if uncertainties are taken 

into account. 

As we can see from the graph, the trend line matches the point with a few errors. A cause of error 
in this investigation is that it is hard to judge the exact value of the length that corresponds to the 
resonance. Also, the wire used might not be uniform, causing error to the data collected. 

Some ways to improve the experiment are to take more measurements and take different length 
sample from the same type of wire. By doing that the experimental data should reduce errors. 

© International Baccalaureate Organization 2007