background image

95 

A

DVANCED 

E

NGINEERING

 

3(2009)1, ISSN 1846-5900 

THERMAL AND STRESS ANALYSIS OF BRAKE DISCS  

IN RAILWAY VEHICLES 

Oder, G.; Reibenschuh, M.; Lerher, T.; Šraml, M.; Šamec, B.; Potrč, I. 

 

Abstract: Present paper shows a thermal and stress analysis of a brake disc for railway vehicles 
using the finite element method (FEM). Performed analysis deals with two cases of braking; the 
first case considers braking to a standstill; the second case considers braking on a hill and 
maintaining a constant speed. In both cases the main boundary condition is the heat flux on the 
braking surfaces and the holding force of the brake calipers. In addition the centrifugal load

1

 is 

considered.   
 

Keywords: railway transport, brake disc, finite element method (FEM), thermal and 
stress analysis 

1 INTRODUCTION 

The main problem of braking and stopping a heavy train system is the great input of 
heat flux into the disc in a very short time. Because of high temperature difference the 
material is exposed to high stress. The result is a heat shock. The problem can be 
solved only by applying a non stationary and numerical calculation. The analysis is 
carried out for two models of the disc (Fig. 1) (the disc is supposed to be symmetrical) 
and for two modes of load. The material of the brake disc is rounded graphite defined 
under the standard SIST EN 1563:1998(en) [2] with a characteristic EN-GJS-500-7 
(EN-JS 1050). The disc is screwed on the hub, which is upset upon the axle of the train 
wagon. During the analysis only one part of the working cycle is considered, and that 
is warming up and cooling down.  

 

Fig. 1. Break disc 

                                                 

1

 The paper work Stress analysis of a brake disc considering centrifugal and thermal load  

background image

96 

2 NUMERICAL MODEL 

2.1 Modeling and preparing the 3D model 

In this analysis two models of the disc are considered: 

•  brake disc without wear (Fig. 2); 

•  worn out brake disc with a 7 mm wear on each side. 

        

         

      

Fig. 2. Section of the new disc with basic measurements 

2.2 Determination of the load 
Two different loads are used: 

•  braking down from the maximum speed of 250 km/h to a standstill. The initial 

temperature of the disc and the surrounding is 50°C.  

 

 
 
 
 
 
 

 

Fig. 3. Stop braking load 

•  braking by the maximum speed of 250 km/h on a hill and maintaining 

constant speed. Because of previous braking the temperature of the disc is 
150°C. The temperature of the surrounding is 50 °C. 

 

 
 
 
 
 
 

 

Fig. 4. Drag braking load 

P(t) [W]

[s]

t

b

P

max

Q

pr

[J]

P(t) [W]

[s]

Q

pr

[J]

P=const

.

background image

97 

The goal is to find out how the temperature is distributed on the whole construction 

of the disc by braking on a flat track to a standstill (Fig. 3). The deceleration factor is 
1.4 m/s

2

. The part of the braking energy that transfers on the surrounding air is not 

considered. The reason for that is the high braking power which causes the dominant 
effect of the heat flux. An assumption is made that the heat flux uses the convection 
with a heat transfer coefficient of 10 W/m

2

K.  

Because of a constant heat flux into the disc, braking on a hill (Fig. 4) is a bigger 

disadvantage, than braking on a flat track. An assumption is made that the heat transfer 
coefficient of the forced convection is 100 W/m

2

K. The goal is to determine how the 

temperatures and stress rise if the disc reaches the maximum working temperature of 
350°C.  

In both cases the effect of the humidity in the air and the heat transfer with 

radiation is not considered.  

2.3 Determination of the physical model 
Braking on the flat track derives from the physical model for determination of the heat 
transfer in dependency from the braking time. Beside that the weight distribution of the 
vehicle is considered. The weight arrangement is 60/40 [3] in the favor of the front part 
of the carriage. This means that the front part of the carriage takes 60% of the whole 
load. In our case only 10 % of the whole brake force is applied to one disc from the 
forward part of the carriage. 

Because of the mentioned weight distribution, only the front part of the carriage is 

analyzed. Every carriage is consistent of for axles with three brake discs attached to 
each axle. The kinetic energy [3] for one wheel considering constant deceleration is: 

( )

( )

dt

t

v

F

dt

t

P

v

M

z

z

t

disc

disc

t

=

=

0

0

2

0

2

2

1

1

,

0

,   

                             (1)                    

The change of energy is equal to the heat flux on the surface of the disc. This ratio 

is used to calculate the thermal load on the brake disc. Other data used for the analysis 
are listed in table 1.  

 

Mass of the vehicle – M [kg] 

70 000 

Start velocity – v

0

 [m/s] 

70 

Deceleration – a [m/s

2

] 1,4 

Braking time  – t

b

 [s] 

50 

Effective radius of the braking disc – r

d

 [m] 

0,247 

Radius of the wheel – r

w

 [m] 

0,460 

Incline of the track – δ [‰] 11 
Friction coefficient  disc/pad – μ [/] 

0,4 

Surface of the braking pad A

c

 – [mm

2

] 20000 

Tab. 1. Data for calculating the heat flux 

 
Forces which work on the brake disc [3]: 

background image

98 

]

[

5

,

9125

t

a

2

1

t

v

r

r

2

v

M

2

1

1

,

0

F

2

z

z

0

w

d

2

0

disc

N

=

=

.                  

 

     (2)         

Instant heats flux entering one side of the braking disc [3]: 

( )

( )

(

)

]

[

t

6860

343000

t

a

v

r

r

F

t

v

F

t

Q

0

w

d

disc

disc

disc

W

=

=

=



.                     (3)                    

In the case of braking on a flat track 26 time steps, each step 2 seconds long, are 

considered.  

In the case of braking on a hill, a physical model is used to determine the heat flux 

in dependency of the potential energy. The vehicle is maintaining a constant speed of 
250 km/h. Consequently the heat flux is constant. The energy is considered to be 
equally divided between the 12 discs of the vehicle. The energy balance is:     

b

t

Q

h

g

M

=

Δ



12

       

 

 

 

 

(4) 

With the consideration of trigonometry and constant speed, the brake power for 

one disc is: 

]

W

[

43711

12

sin

0

=

=

δ

v

g

M

Q

 

 

 

                 (5)                    

In this case 52 time steps with a constant heat flux are used. 

2.4 Force determination for the brake caliper  
The surface pressure between the disc and the pad, on behave of the calculated force 
applied to the disc, needs to be determined. In the case of braking on a flat track the 
pressure is: 

]

MPa

[

14

,

1

=

=

μ

c

disc

A

F

p

.    

 

    

 

 

 

     (6)            

In the case of an inclined track the force is: 

]

[

233

r

r

v

2

Q

F

d

w

0

disc

N

=

=

μ



.                                                                       (7)                    

Surface pressure is: 

]

MPa

[

03

,

0

4

,

0

20000

233

=

=

p

.   

 

 

 

                   (8) 

These additional loads are considered in both cases of the analysis. 

2.5 Determination of boundary conditions, mesh properties and loads 
The calculated heat flux is considered for both sides of the disc. Because the stress is 
also analyzed, the disc needs to be properly fixed. The disc is put together rigid where 
the disc is screwed onto the hub (Fig. 5).  

The forming of the volume mesh is automatic. The mesh is consistent of 84354 

tetrahedral elements (designation of the element is C3D4AT – it allows us to perform a 
thermo – deformational analysis) each approximately 6 mm big. 

background image

99 

 

Fig. 5. The meshed disc section with the load and fixing spot 

To perform the analysis the material properties from the table 2 are used. 

Heat conductivity – λ [W/mK] 

35,2 

Density – ρ [kg/m

3

] 7100 

Specific heat – c

p

 [J/kgK] 

515 

Module of elasticity – E [MPa] 

169000 

Poisson number – ν [/] 

0,275 

Tab. 2. Material properties 

3 THE ANALYSIS OF THE RESULTS 

3.1 Thermal analysis 
The first results show the case of a flat track and a new disc (the initial temperature of 
the disc and the surrounding is 50°C). Considering that the disc during braking phases 
does not cool down to 50°C a presumption is made that the new temperature of the disc 
is 150°C. The temperature of the surrounding is still 50°C.  

In case of braking on the flat track the highest temperatures reach up to 174°C for 

the new disc. This temperature is reached after a time period of 30 s. Because the heat 
flux is decreasing, the temperature falls after 52 s down to 154°C. The cooling ribs and 
the place where the disc is bolted to the hub are almost unaffected by the changing 
temperatures (Fig. 6, a). 

 

 

       

a)

   

 

 

 

            

 b)

 

Fig. 6. Temperature fields for the new disc a) and the worn out disc b) braking on a flat track 

Q

 

fixing spot 

[°C] 

[°C] 

background image

100 

For the worn out disc with the same load, the maximum temperatures of 211°C are 

achieved after 38 s. They appear on areas where the wreath of the disk and the cooling 
ribs are not connected. In this case the ribs are heavier exposed to the heat flux because 
the disc wreaths are thinner. The temperatures are from 30 – 40 °C higher. After a time 
period of 52 s the temperature of the disc reaches 195°C (Fig. 6, b).  

For the worn out disc on an inclined track the temperature after 104 s reach 240°C. 

The highest values are on the contact surface between the brake disc and brake pad. 
Because of the high traveling speed, the temperature of the cooling ribs first fall from 
150°C to 125°C. After a while the temperature rise back to 140°C (Fig 7, a). 

 

 

 

 

 

      

a)

   

 

 

 

         

b)

 

Fig. 7. Temperature fields for the new disc a) and the worn out disc  

b) braking on an inclined track 

 
The temperature for a worn out disc after 104 s are 258°C. The hottest areas appear 

on the same spots as they do in the first test – flat track. Beside that, at first the 
temperature of the cooling ribs fall from 150°C to 130°C. After a while they rise back 
to 147°C (Fig. 7, b).  

The area directly beneath the braking pad carries the main burden. This is also the 

place where the highest temperatures are achieved. The figures show how the 
temperatures toward the hub fall. This information is needed to determine the influence 
of the heat flux on the disc. 

3.2 Analysis of the stress 
Thermal stresses in the disc appear because the temperatures rise. Beside the thermal 
stress, the centrifugal load and the holding force of the brake caliper is also considered. 
The goal of this analysis is to determine the influence of the centrifugal load in 
comparison with the thermal load. The comparison stress is given on von Mises.  

In the case of a flat track and considering the centrifugal load, the stresses are  

185 MPa. On spots where the thermal stresses are the highest, the value is 110 MPa 
(Fig. 8, a). 

[°C] 

[°C] 

background image

101 

 

 

                                       

                                               

 

 

 

 a) 

 

 

 

         b) 

Fig. 8. Stress field for the new disc a) and the worn out disc b) braking on a flat track 

In case of the worn out disc with the same load, the maximum value is 174 MPa. 

The maximum values appear on the passage of the holding teeth (Fig. 8, b). 

In the case of braking on an inclined track the stress for the new disc reach up to 

162 MPa (Fig.9, a). 

 

 

 

                                      

 

 

 

 

  

a)

 

 

 

 

       

b)

 

Fig. 9. Stress field for the new disc a) and the worn out disc b) braking on an inclined track 

 
In the last case of the analyzed worn out disc the stress are 148 MPa (Fig. 9, b). 

The maximum values appear on the passage of the holding teeth.          

[MPa] 

[MPa] 

[MPa] 

[MPa] 

]

MPa

[

185

max

=

σ

]

MPa

[

174

max

=

σ

 

]

MPa

[

162

max

=

σ

]

MPa

[

148

max

=

σ

 

background image

102 

4 DISCUSSIONS OF THE RESULTS 

Of all the cases, the highest temperatures arise from the worn out disc on an inclined 
track. In 104 s the temperatures rise to 258°C. The actual braking time is shorter and 
amounts to 65 s. The highest allowed temperature of the disc is 350°C (long-term). 
From the results we can see that centrifugal loads contribute 10 – 20 MPa of stress, 
depended on the model of the disc and the load. The highest comparison stress on von 
Mises is 185 MPa – that value is still smaller than the permitted value of 213 MPa, 
which considers a safety factor of 1,5 (table 3).  

Numerical analyze 

T

 [°C] σ

ther

 [MPa] σ

ther_cent

 

[MPa] 

New disc 

174 

170 

185 

Flat track 

Worn out disc

211 

158 

174 

New disc 

240 

141 

162 

Inclined track

Worn out disc

258 

130 

148 

Tab. 3. The results of numerical analyze

 

 
We achieved the highest difference in values by braking on a flat track. The reason 

why - there is a greater temperature difference in the first case as it was in the second.

 

5 CONCLUSIONS 

Temperatures and stress in discs under different loads are very high. Although they are 
fulfilling the buyer’s requirements for safety, we did not considered shearing forces, 
residual stress and the cyclic loads during brake discs lifespan. The results need to be 
compared with experimental results, which is also our suggestion for future work.      

References: 

[1]  ABAQUS 6.7.1 – tutorial. 2008. 
[2]  SIST EN 1563:1998(en). Founding – Spheroidal graphite cast irons. SIST, Ljubljana 

1998. 

[3]  Mackin, T.J.: Thermal cracking in disc brakesEngineering Failure Analysis (2002), no. 

9, str.63-76. 

[4]  Oder, G.: Determination of non stationary thermal and stress fields in brake discs. 

Maribor: Faculty of Mechanical Engineering, 2008. 

[5]  Reibenschuh, M.: Stress analysis of a brake disc under centrifugal and thermal load. 

Maribor: Faculty of Mechanical Engineering, 2008.