1
Wykład 14.
Elektryczność i magnetyzm. Pole magnetyczne
Ciekawe strony internetowe:
http://en.wikipedia.org/wiki/
(* wikipedia *)
http://hyperphysics.phy-astr.gsu.edu/
http://www.falstad.com/mathphysics.html
(* komputerowe demonstracje fizyczne*)
1. Pole magnetyczne
Prawo Lorentza: siła działając na cząstkę o ładunku q poruszającą się w polu
elektrycznym i magnetycznym:
)
(
B
v
E
q
F
r
r
r
r
×
+
=
(1.1),
gdzie v – prędkość cząstki, ładunków, E, B wielkości charakteryzujące pole
elektryczne [V/m] i magnetyczne [T], odpowiednio.
Przykład działania siły Lorentza przedstawia rysunek 1.
Rys. 1 Siła Lorentza działająca na dodatni i ujemny, poruszający się ładunek
elektryczny
2
Kierunek pola magnetycznego określamy poprzez regułę prawej dłoni.
Rys. 2 Reguła prawej dłoni.
Pole magnetyczne – relatywistyczna część pola elektrycznego (Einstein).
Siła działająca na przewodnik z prądem I:
)
(
B
l
I
F
r
r
r
×
=
(1.2),
lub (postać róŜniczkowa)
)
(
B
l
d
I
F
d
r
r
r
×
=
(1.3).
Pole magnetyczne przyłoŜone do przewodnika powoduje efekt Halla.
1.1
Pole magnetyczne przewodnika z prądem
Przepływowi prądu towarzyszy powstanie pola magnetycznego (H. C. Oersted,
1820 r)
3
Rys. 3 Pole magnetyczne przewodnika z prądem
Na rysunku 3 pokazano przewodnik z prądem i linie pola magnetycznego.
Wiadomo, Ŝe indukcja pola magnetycznego jest proporcjonalna do natęŜenia
prądu i odwrotnie proporcjonalna do odległości.
r
I
B
π
µ
2
0
=
(1.4).
gdzie
⋅
=
−
2
7
0
10
4
A
N
π
µ
przenikalność magnetyczna próŜni.
Pole wektorowe: H – wektor natęŜenia pola magnetycznego, B – wektor
indukcji pola magnetycznego
H
B
r
r
r
µ
µ
0
=
(1.5).
W układzie SI:
jednostką indukcji pola magnetycznego B jest Tesla [1 T]= [1 N/Am],
1 Tesla [T] = 10000 Gaussów [Gs];
jednostką natęŜenia pola magnetycznego H jest [1 Amper/metr]
Oznaczenie:
r
µ
µ
µ
0
=
(1.6).
4
Przenikalność magnetyczna i elektryczna próŜni określa prędkość światła (w
próŜni)
0
0
1
µ
ε
=
c
,
(1.7)
Wartości względnej przenikalności magnetycznej dla róŜnych materiałów
zebrano w tabeli 1.
Tabela 1 Wartości względnej przenikalności elektrycznej dla kilku wybranych
materiałów.
ośrodek
r
µ
przenikalność
magnetyczna
próŜnia
1
powietrze
1.0000004
Cu
0.999999
stal
300 - 2000
Szczególny przypadek: pole magnetyczne ziemi.
Rys 4. Pole magnetyczne Ziemi i jego odpowiednik
Pole magnetyczne ziemi 0.3 – 0.6 Gaussa.
Powstaje pytanie: jak policzyć pole magnetyczne dla konkretnego przypadku.
2. Wyznaczenie pola magnetycznego
Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot – Savarta i
prawo Ampera.
5
2.1 Prawo Biot – Savarta
Prawo róŜniczkowe.
Rys 5. Prawo Biot - Savarta
NatęŜenie pola magnetycznego wytwarzanego w odległości r od elementu dl
wynosi:
3
4
r
r
l
d
I
H
d
r
r
r
×
=
π
(2.1).
zaś indukcja pola magnetycznego:
3
4
r
r
l
d
I
B
d
r
r
r
×
=
π
µ
(2.2).
Przykład
policzyć pole magnetyczne:
a)
odcinka prostoliniowego,
b)
przewodnika kołowego (okręgu).
2.2 Prawo Ampera
6
Prawo Ampera (od nazwiska francuskiego fizyka Andre – Marie Ampere) wiąŜe
cyrkulację (krąŜenie) pola magnetycznego po konturze zamkniętym l z
natęŜeniem prądu przechodzącego przez powierzchnię wyznaczoną przez tenŜe
kontur l.
∑
∫
=
i
i
l
I
dl
H
(2.3).
Przykład:
Obliczyć pole magnetyczne wytwarzane przez:
a)
nieskończony, prostoliniowy przewodnik o promieniu R;
b)
selenoid o n zwojach (na jedn. długości) patrz rysunek poniŜej.
Rys. 6 Selenoid, schemat
Pole magnetyczne wytwarzane przez selenoid podobne jest do pola
magnetycznego trwałego magnesu.
7
Rys. 7 Pole magnetyczne selenoidu i trwałego magnesu.
Linie pola magnetycznego tworzą zamknięte krzywe. Przyjęto konwencję, e
linie pola „wypływają” z bieguna północnego (N) i „wpływają” do bieguna
południowego (S).
Nie moŜna podzielić magnesu na izolowane północne i południowe monopole.
Aby zwiększyć pole magnetyczne (natęŜenie, indukcję pola magnetycznego)
najprościej jest wypełnić rdzeń selenoidu materiałem o duŜej względnej
przenikalności magnetycznej
Rys. 8 Selenoid wypełniony powietrzem (lewy rysunek) rdzeniem Ŝelaznym
(prawy rysunek)
3. Własności magnetyczne materii
8
Pole magnetyczne w ośrodku zmienia się ze względu na oddziaływanie
magnetyczne cząsteczek, dipoli magnetycznych.
Dipol magnetyczny definiujemy jako pole magnetyczne wytwarzane przez
obwód kołowy, w którym płynie prąd I:
moment magnetyczny wynosi:
A
I
r
r
⋅
=
µ
(3.1).
w jednostkach [1 A m
2
]
Na dipol magnetyczny znajdujący się w polu magnetycznym działa moment siły
równy
B
M
r
r
r
×
=
µ
,
(3.2).
Energia potencjalna dipola magnetycznego jest równa:
B
U
r
r
⋅
−
=
µ
,
(3.3).
Są to zaleŜności analogiczne do dipola elektrycznego w polu elektrycznym.
Pole magnetyczne w ośrodku jest równe:
H
H
H
H
M
H
B
r
r
r
r
r
r
r
µ
µ
χ
µ
χ
µ
µ
µ
0
0
0
0
0
)
1
(
=
+
=
+
=
+
=
(4.2.3).
gdzie: M – wektor magnetyzacji, zaś współczynnik
χ
nazywany jest
podatnością magnetyczną ośrodka.
Ze względu na swoje własności magnetyczne materię dzielimy na trzy grupy:
•
diamagnetyki,
1
≤
µ
;
•
paramagnetyki,
1
≥
µ
;
•
ferromagnetyki,
1
>>
µ
.
Diamagnetyki to materiały o zerowym dipolowym momentem magnetycznym
w nieobecności zewnętrznego pola magnetycznego. Obecność zewnętrznego
9
pola magnetycznego indukuje prąd na orbicie atomu; prąd, który tak płynie, aby
wytworzony przez nie pole magnetyczne było przeciwnie skierowane do
przyłoŜonego, zewnętrznego pola magnetycznego. Jest to atomowa wersja
reguły Lentza: indukowane pole magnetyczne sprzeciwia się polu
magnetycznemu, które go wytworzyło.
Paramagnetyki, zawierają niezerowe momenty dipolowe magnetyczne.
Powoduje to, Ŝe ich magnetyzacja jest proporcjonalna do przyłoŜonego pola
magnetycznego (B), a odwrotnie proporcjonalna do temperatury (T). Jest to
prawo Curie:
T
B
C
M
r
=
,
(3.3).
gdzie: C – stała Curie, M – magnetyzacja,
Ferromagnetyki, to materiały, będące szczególnym rodzajem paramagnetyków.
O ile w paramagnetykach, dipole magnetyczne są ułoŜone losowo, to w
ferromagnetykach istnieje oddziaływanie długozasięgowe, które porządkuje
ułoŜenie momentów magnetycznych w specyficzny sposób. Wynikiem istnienia
oddziaływania długozasięgowego jest powstanie struktury domenowej w całej
objętości materiału, co dalej skutkuje zjawiskiem histerezy magnetycznej.
Rys. 9 Rodzina histerez dla stali
H
c
– pole koercji, B
R
– pole remanencji.
10
Rys 10. Histereza M(H) – magnetyzacja w funkcji natęŜenia pola
magnetycznego
WaŜne
zastosowania
praktyczne!
W
przemyśle
energetycznym,
elektromechanicznym, elektronicznym (nośniki magnetyczne pamięci).
Ferromagnetyzm jest ogólną nazwą całej grupy zjawisk jak:
•
antyferromagentzym,
•
ferrimagnetyzm,
•
metamagnetyzm
4. Prawo Gaussa dla pola magnetycznego
Analogicznie do pola elektrycznego, moŜemy sformułować prawo Gaussa dla
pola magnetycznego:
0
lub
0
=
=
∫
B
div
A
d
B
A
r
r
r
(4.1).
Równanie 4.1 przedstawia postać całkowa i róŜniczkowa prawa Gaussa dla pola
magnetycznego. Łatwo wykazać, Ŝe strumień indukcji pola magnetycznego
przechodzącego przez dowolną powierzchnię zamkniętą jest równy zero. Pole
magnetyczne jest polem bezźródłowym! Nie istnieją monopole magnetyczne.
11