background image

Zbigniew TURLEJ 

Electrotechnical Institute 

 
 

Efficiency and colors in LEDs light sources 

 
 

Abstract.  The light gains from LEDs continue to grow, doubling a about every two years. It gives real hope for the LEDs solving problem of 
efficiency in the lighting. This paper presents review some problems connected with efficiency and colors inorganic LEDs technologies, also gives 
some new perspectives for development based on organic LED and plasmonics.   

 

Streszczenie. Światło emitowane przez źródła LED podwaja swą skuteczność świetlną co dwa lata. To stwarza poważną nadzieje na rozwiązanie 
problemu efektywności energetycznej w oświetleniu. W referacie zarysowano historię i perspektywy rozwoju efektywności i barwy w technologii LED 
ze szczególnym uwzględnieniem materiałów nieorganicznych, organicznych i efektów plazmoniki. (Barwy i efektywność źródeł światła LED). 
 
Keywords: energy efficiency, LED colors and technology,  light and health, illuminating technology.   
Słowa kluczowe:  efektywność energetyczna, barwa i technologie LED, światło i zdrowie, technika świetlna.  

 
 

Lighting and energy efficiency 

Population and economic growth threaten to keep 

energy demand and carbon emissions growing, too. But the 
new long-range forecasts (fig.1) produced by energy 
experts show that in many key areas, increased efficiency 
offers real hope for solving the problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1. The increasing efficiency offers the cutting carbon emissions 
[1] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. The integration of LEDs with photovoltaic (PV) and 
architectural transparent materials  

Lighting gobbles up 20% of the world’s electricity, or the 

equivalent of roughly 600.000 tons of coal a day. Forty 
percent of that powers old-fashioned incandescent light 
bulbs – a 19

th

-century technology that wastes most of the 

power it consumes on unwanted heat. Light emitting diode 
(LED) lamps, not only use less electricity then incandescent 
bulbs to generate the same amount of light, but they also 
last 50 times longer. In December 2006, Dutch electronic 
firm Philips became the first major bulb manufactures to 
announce a gradual phase out of the production of 
incandescent bulbs. Now exist an opportunity to have 
lighting systems that modulate their intensity to supplement 
natural light. These systems will require the integration of 
LEDs with photovoltaic (PV) and architectural transparent 
materials (fig.2). 

 

The unique properties  

Light sources should be as small as possible, produce 

light efficiently and have a long life. Until now, however, no 
filament or discharge lamp has combined all three 
properties. Only light emitting diodes (LEDs) achieves this. 
No other lamp possesses comparably small dimensions. 
The miniature form requires small optical systems and 
creates new demands for light guidance. The light optical 
systems are mode from synthetic materials with light 
refractive indices and replace the classic metal reflector. 
The light gains from light diodes continue to grow, doubling 
about every two years. It is not unrealistic to assume that in 
ten to fifteen years LEDs will become the most efficient light 
sources (fig. 3). 
 

 
 
 
 
 
 
 
 
 

Fig.3. The light yield from LEDs is reaching ever higher vales [2] 

 
With 50.000 operational hours light diodes have a very 

long life. This results in a new conceptual approach to the 
design and development of lighting. There is no longer a 
need for equipment for changing the light source. LEDs and 
luminaire grow old jointly and both are changed together 
when the lamp has reached the end of its lifespan. 

PRZEGLĄD ELEKTROTECHNICZNY - KONFERENCJE, ISSN 1731-6106, R. 5 NR 1/2007

 

55

background image

The light production 

In conventional lamps visible light arises as a by-product 

of the warming of metal helix, or by a gas discharge or by 
the conversion of a proportion of the ultraviolet radiation 
produced in such a discharge. In light diodes the production 
of light takes place in a semiconductor crystal which is 
electrically excited to elektroluminescence (fig. 4, table 1). 

 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.4. LED functional principles. The light comes from 
semiconductor crystal (LED chip). It is electrically excited to 
produce light: two areas exist within the crystal, a n- conducting 
area with a surplus of electrons and a p- conducting area with a 
deficit of electrons. In the transitional area, called pn- transition or 
depletion layer, light is produced in a recombination process of the 
electron with the atom with the deficit of an electron when current is 
applied to the crystal [2].

 

 
Table 1. History of light production by LED  

1907 

Henry Joseph Round (1881- 1966) discovers the 
physical effect of elektroluminescence. 

1962 

The first red luminescent diode of type GaAsP 
comes onto the market. The industrially produced 
LED is  barn. 

1971 

From the beginning of the seventies LEDs are 
available in further colours: green, orange, yellow. 
Performance and effectiveness is continually being 
improved in all LEDs. 

1980s  to early 1990s High performance LEDs (LED 

modules) in red, later red/orange, yellow and 
green become available. 

1995  The first LED producing white light by 

luminescence conversion is introduced. 

1997 

White LEDs come onto the market. 
 

 

As protection against environmental influences the 
semiconductor crystal is set into a housing. This is 
constructed so that the light radiates in a semicircle of 
almost 180 degrees. Guidance of the light is thus easier 
then in filament or discharge lamps, which generally radiate 
light in all directions. 
 
The monochromatic and the white colores 

According to the type and composition of the 

semiconductor crystal the light diode has different 
monochromatic colors. Today there are blue, green, yellow, 
orange, red and amber, together with nuances of these 
colors. The white light can be generated by three general 
approaches, illustrated in figure 5. The first is the 
wavelength-conversion approach; the second is

 the color 

mixing approach; and the third is a hybrid between 
the two. 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5. The three possible approaches to white-light production [3] 

 

 

Wavelength Conversion Approach 

The first approach for transforming narrowband 

emission into broadband white light involves using UV LEDs 
to excite phosphors that emit light at down-converted 
wavelengths. In general, this approach is likely to be the 
lowest cost, because of its low system complexity (only a 
single LED chip, and since the colors are created already 
blended, lamp-level optical and color engineering is 
minimized). It is also likely to be the least efficient, because 
of the power-conversion loss associated with the 
wavelength down-conversion; and the least flexible, since 
the colors are “preset” at the factory. 
Hence, a general challenge will be the development of UV 
(340-380 nm) LEDs with high (>70%) external power-
conversion efficiency and input power density, and 
multicolor phosphor blends with high (>85%) quantum 
efficiency.  
 
Color Mixing Approach 

The second approach for transforming narrowband 

emission into broadband white light is to combine light from 
multiple LEDs of different colors.  In general, this approach 
is likely to be the most efficient, as there are no power-
conversion losses associated with wavelength down-
conversion. It is also likely to be the most flexible, since the 
hue of the

 

light can be controlled by varying the mix of 

primary colors, either in the lamp, or in the luminaire. 
However, it is also likely to be the most expensive, because 
of its high system complexity (multiple LED chips, mixing of 
light from separate sources, and drive electronics that must 
accommodate differences in voltage, luminous output, 
element life and thermal characteristics among the 
individual LEDs). Hence, a general challenge will be the 
development of red, green and blue LEDs with high (>50%) 
external power-conversion efficiencies and input power 
density, and low-cost optics and control strategies for 
spatially uniform, programmable color-mixing either in the 
lamp or in the luminaire. 
 
Hybrid Approach 

The third approach for transforming narrowband 

emission into broadband white light is a hybrid approach. 
The present generation of white LEDs, with luminous 
efficacies of 25

 

lm/W, is based on this approach. Primary 

light from a blue (460 nm) InGaN-based LED is mixed with 
blue-LED-excited secondary light from a pale-yellow 
YAG:Ce

3+

-based inorganic phosphor. The secondary light is 

centred at about 580 nm with a full-width-at-half-maximum 

PRZEGLĄD ELEKTROTECHNICZNY - KONFERENCJE, ISSN 1731-6106, R. 5 NR 1/2007

 

56 

background image

line width of 160 nm. The combination of partially 
transmitted blue and reemitted yellow light gives the 
appearance of white light at a color temperature of 8000 K 
and a luminous efficacy of about 25 lm/W. This combination 
of colors is similar to that used in black-and-white television 
screens – for which a low-quality white intended for “direct” 
rather than “indirect” viewing – is acceptable. Other 
variations of this approach are possible. The simplest 
extension would be to mix blue LED light with light from a 
blue-LED excited green and red duo-color phosphor 
blend25 – this variation is likely to be give the best balance 
between efficiency, color quality, cost and system 
complexity. A more complex but perhaps more efficient 
extension of this approach would be to mix blue and red 
LED light with light from a blue-LED excited green 
phosphor. In general, this approach is intermediate 
amongst the three approaches in efficiency, complexity and

 

cost. It is likely to be intermediate in efficiency, as power-
conversion losses from wavelength down-conversion are 
less from the blue than from the UV, but still greater than no 
power-conversion losses. It is likely to be intermediate in 
cost and system complexity, as only one (or at most two) 
LEDs is used, but light from the LED must still be color-
mixed with light from the phosphor. Hence, a general 
challenge will be the development of blue LEDs with high 
(>60%) external power-conversion efficiencies and input 
power density, blue-excitable duocolor phosphor blends 
with high (>80%) quantum efficiency, and low-cost optics for 
spatially uniform color-mixing in the lamp.

 

 
 
 
a) 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 

Fig. 6. The human eye registers even the slightest deviation in hue 
(a) such as coloured wall washing (b) [2] 
 

Problems with colors    

One of the key characteristics of LEDs is their light color 

saturation. Because of the manufacturing process we con 
have deviations in the light colors of two of same LED 
modules. The human eye registers even the slightest 
deviation in hue (fig.6). Semiconductor producers  classify 
each LED into different categories, known as “binnings” 
using the values actually measured. But even with the most 
stringent selection, deviations still have to be accepted. To 
ensure consistent colour Erco has introduced a 

colour 

compensation system. Every colour compensated LED 
modules is individually measured and adjusted in the 

factory. The compensation factors are permanently stored 
in the control gear.

 

 
Blue LED and health   

Circadian phototransduction is a term used to describe 

how the retina converts light into neural signals that 
regulate rhythms such as sleep, body temperature and 
hormone production, and has been a topic of interest in 
many laboratories around the world. We now know that the 
circadian system is maximally sensitive to short-wavelength 
light and that a combination of classical photoreceptors and 
newly-discovered retinal neurons, which respond directly to 
light exposure (called intrinsically-photosensitive retinal 
ganglion cells or ipRGCs), participate in circadian 
phototransduction. Much of what we do in lighting rests 
upon a quantitative foundation for the specification of  light 
sources and light levels for vision. The model of  circadian 
phototransduction is the first attempt to establish a parallel 
foundation for the circadian system. Much like we want to 
know many lumens per watt a light source produces for the 
visual system, it is now possible to calculate circadian 
stimulus per watt. Table 2 shows values of circadian 
stimulus per watt for several commercially available light 
sources.  
 

Table 2. Photopic lumens per watt and circadian stimulus per watt 
for various light sources [3] 
 

 

As we can see in Table 2 the blue LED light source (470 

nm) is the most effective in suppressing melatonin than  
others. Figure 7 shows the fixture for a melatonin regulation 
in workplace. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
Fig.7. The blue LED (470 nm) fixture for a effect melatonin 
regulation in workplace designed by Electrotechnical Institute [4] 

 

Looking a long way into the future, it is easy to imagine 

that new standards will be adopted, new light sources 
circadian systems, we may all end up in a healthier built 
environment. 

Light source 

Photopic 

lumens/watt 

Circadian 

stimulus/watt 

Fluorescent 

3000K 

100 lm/W 

74 CS/W 

Fluorescent 

7500K 

100 lm/W 

157 CS/W 

Incandescent 

12 lm/W 

12 CS/W 

D65 

70 lm/W 

133 CS/W 

Clear Mercury 

45 lm/W 

18 CS/W 

Blue LED 

(470nm) 

8 lm/W 

15 lm/W 

223 CS/W 
418 CS/W 

PRZEGLĄD ELEKTROTECHNICZNY - KONFERENCJE, ISSN 1731-6106, R. 5 NR 1/2007

 

57

background image

LEDs - the new horizons 
  Korean company  has released a single-die white 
inorganic LED that can emit up to 240 lm at its maximum 
drive current of 1A. The new P4 emitter is also claimed to 
offer the word’s highest luminous efficacy, coming at 100 
lm/W at 350 mA drive current that is required for general 
illumination applications. Company says that the high 
luminosity was reached through its proprietary phosphor 
and packaging techniques, and further improvements are in 
the pipeline. A 135 lm/W source is due to emerge this year, 
and more incremental improvements are expected to lead 
to 145 lm/W performance early in 2008.

 

Another 

revolutionary means of lighting for the future is organic 
LEDs (OLEDs).Today they illuminate displays, but they will 
soon open up other types of lighting. Research on materials 
has discovered a series of systems in which light can be 
produced. The results reveal two groups: sm-OLEDs with 
small molecules and p-OLEDs with polymers. They are 
mainly differentiated by the number of materials necessary 
to construct the light producing layers (fig 8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. Schematic representation of the functional principles of 
OLEDs – the organic layer of sm-OLEDs consists of four coatings. 
The same functionality can be achieved in p-OLEDs with two 
coatings [5]. 
 

Using a method of light mixture in this  organic layers, 

white and colored OLEDs which are completely transparent 
when switched off, can be manufactured. The production of 
these is simple but their light can, however, only be dimmed 
and not changed in color. The mixture for white light makes 
it possible to adjust color temperature because distinct

 

organic layers are used to produce the three basic colors. 
Such solutions hence offer possibilities for the design of 
color sequences. Alternatively white light can be produced 

with the aid of conversion principle, exactly as with 
inorganic LEDs. If white OLEDs, which are constructed in 
this way, then the light source is not transparent when 
switched off. OLEDs, which are constructed from single, 
individually controllable points, offer maximum flexibility in 
the production of color and in dimming, however at very 
high cost. In future solutions to this problem information 
could, for example, be presented on illuminating surfaces.

 

Recently, however, scientist have been working on a new 
technique for transmitting light through nanoscale interface 
structures made of a metal and a dielectric. Under the right 
circumstances, we have a resonant interaction between the 
waves and the mobile electrons at the surface of the metal. 
The result is the generation of surface plasmons – density 
waves of electrons that propagate along the interface like 
the ripples that spread across the surface of a pond after 
you throw a stone into the water. Plasmonic materials may 
revolutionize the lighting industry by making LEDs brighter. 
It has become evident that this type of field enhancement 
can also dramatically raise the emissions rates of dots and 
quantum wells – tiny semiconductors structures that absorb 
and emit light – thus increasing the efficiency and 
brightness of solid-state LEDs. In 2004 at Japan’s Nichia 
Corporation was demonstration that coating the surface of a 
gallium nitride LED with dense arrays of plasmonic 
nanoparticles (made of silver, gold or aluminum) could 
increase intensity of the emitted light 14-fold.  

 

 

REFERENCES 

[ 1 ]   G l a i n   S . ,   K a s h i w a g i   A . ,   K r o v a t i n   Q ., Seeing the 

scenarios, Davos Special Report, Newsweek, (2007), n.4, 44-
45, 

[2] LED – Light from the Light Emitting Diode,  Fördergemeinschaft 

Gute Licht, (2006) 

[3] Light Emitting Diodes (LEDs) for General Illumination, OIDA

(2002)   

[ 4 ]   T u r l e j   Z., Czynnik hormonalny w oświetleniu wnętrza, Prace 

Instytutu Elektrotechniki, (2006), n.228, 297-306 

[5] Briefings, Lighting, (2007), n.2, 8-14 
[ 6 ]   A t w a t e r  H., The Promise of Plasmonics, Scientific American

(2007), n.4, 38-45, 

[7] F i g u e r o   M.,  Research  matters, LD+A, (2006), n.5, 24-26,  
[8] S c h i e l k e  T., Color compensation: ERCO technology for trude-
color varychrome LED luminaires, ERCO Leuchten GmbH, (2006), 
25 
_____________________ 
Author:
 dr inż. Turlej Zbigniew, Electrotechnical Institute, 
Pożaryskiego 28, 04-703 Warsaw, Poland, e-mail: 

z.turlej@iel.waw.pl

 

 

PRZEGLĄD ELEKTROTECHNICZNY - KONFERENCJE, ISSN 1731-6106, R. 5 NR 1/2007

 

58