background image

A History of the Evolution of EMC Regulatory  

Bodies and Standards 

Donald Heirman

1

, Manfred Stecher

2

1

Don HEIRMAN Consultants, Lincroft, New Jersey, USA, d.heirman@ieee.org

2

Rohde and Schwarz, Munich, Germany, Manfred.Stecher@rsd.rohde-schwarz.com

Abstract — This paper provides a historical perspective of 

the EMC regulatory environment and associated EMC 
standards as they impact commercial products with empha-
sis in activity since WW II.  It is focused in two parts:  part 1 
will deal with significant events in Europe while part 2 will 
focus on the significant activity of the US Federal Communi-
cations Commission and two of the many US EMC stan-
dards writing bodies.  

I. I

NTRODUCTION

When the word “interference” is mentioned, the public 

generally sees this as a streak on their analog TV sets or a 
buzz in their audio receiver or maybe even a drop out of a 
mobile phone call.  They believe that this should not 
occur and that all of the newest electronics should work in 
harmony no matter where they are used.  This has placed 
significant pressure on the manufacturers to create a 
product that can work in its intended RF environment 
while not causing undesirable interference or distur-
bances.  This is called EMC or electromagnetic compati-
bility.  How is this achieved?  For some time now, there 
has been regulatory requirements that limit the emissions 
from products and in the European Union an essential 
requirement that these same products be immune to a 
certain level of these emissions from other products and 
radio services.  To assess the product EMC has required 
that EMC standards be written and used.  But how did 
these regulatory requirements and EMC standards evolve 
and what is the history leading up to present regimes?  
This is the topic of this paper which will be presented in 
two parts:  Part 1:  history of EMC regulations and stan-
dards in Europe and Part 2:  similar background in the 
United States focusing on the role of the Federal Commu-
nications Commission and two of the significant product 
EMC standards resources 

II. P

ART

 1: E

UROPEAN

 EMC R

EGULATORY 

A

ND

S

TANDARDS

 H

ISTORY

Introduction: Certainly, EMC problems occurred al-

ready with the distribution of telephony and telegraphy 
around the world. Today we do not know very much of 
such problems. A law of 1892 on telegraphy installations 
signed by the Wilhelm II (German Emperor 1888-1918) 
provides a legal solution for the problem of disturbance 
coupled between lines of installations, which was impor-
tant enough to be included in the law [1]. 

RFI however proved to be a tremendous problem when 

AM radio broadcasting started in the early twenties of 

the last century. Since the author has detailed sources 
about the development in Germany, this will be reported 
first, which shall not preclude that the problems and solu-
tions were not similar in other European countries. But 
the development shows that there was a real need for RFI 
standards and regulation. In Germany, AM broadcasting 
(“entertainment broadcasting”) officially started only in 
October 1923. Besides that, there was other broadcasting, 
e.g. broadcast for news agencies, telegraphic weather 
broadcast, ocean broadcast and time broadcast [2]. In 
1925 the Union Internationale de Radiotelephonie (UIR) 
was founded in Geneva primarily for the allocation of 
transmit frequencies.  

Soon after the introduction of broadcast receivers in 

private homes, lots of complaints were raised and it 
became apparent that there were other users of the allo-
cated radio spectrum, like quenched-spark transmitters 
for telegraphy, which had to be replaced by radio valve 
transmitters between 1924 and 26 outside the frequency 
band of 500 to 1500 kHz. Detailed investigations had to 
be started on radio interference caused by tramways in 
Berlin. Also in 1924 the High-Frequency Committee in 
the VDE (Union of German Electrical Engineers) started 
the development of guidelines for the protection of the 
broadcast system against adverse effects. The Ministry of 
Posts and Telecommunications (MPT) asked the regional 
PTT offices to seek details about the complaints. Based 
on the reports, the MPT asked the VDE to prepare tech-
nical measures for the avoidance of radio interference by 
electrical equipment – especially against rf medical 
equipment. Subsequently VDE 0759 (sometimes also as 
VDE 478) on construction and test of rf medical equip-
ment was published in 1928 i.e. the first VDE standard 
on radio interference measures [3].  

Organisation of broadcast assistance. In 1926, the 

MPT sent an order to the regional PTT offices for the 
installation of local advisory boards for the solution of 
daily complaints. With the help of radio clubs, radio 
shops and the media, radio assistants were recruited on an 
honorary basis and immediately the first guidelines on 
radio assistance were published in 1926. In 1930 there 
were already 2300 interference areas with 7300 radio 
assistants. This new organisation grew further and in 
1932 there were 5800 radio assistants (1480 from PTT) 
and 2000 group leaders (1760 from PTT). Approx. 2500 
interference-detecting instruments were available to them. 
Since 1929 a broadcast commissioner was installed in the 
MPT for the organisation of the radio assistance and of a 

83

background image

The broadcast interference service continued after 

1945. In 1950 they had 135 regional offices in West
Germany and were reorganised by 1952 to have 70 re-
gional offices and renamed to Radio Interference Meas-
urement Service. In the 1990ties the service was further
reduced to 26 regional offices with about 130 vehicles. In
2000 the total number of interference complaints was in
the order 17 000, with approx. 9200 (56%) dealing with
sound and TV broadcast. The reasons for this reduction
despite the increased amount of use of radiocommunica-
tion media are many-fold: use of FM instead of AM re-
ception, use of satellite TV instead of terrestrial and
increased use of digital radiocommunication systems.
Present estimates say that the actual number of com-
plaints arriving at the interference service is one sixth of
the real amount of interference cases to broadcast (audio
and TV) and one half of the amount of interference cases
to safety services.

scientific committee for interference to broadcast ser-
vices. During a World Energy Conference in Berlin 1930,
the broadcast commissioner requested the suppression of
disturbance in all types of electrical equipment and the
revision of the associated equipment specifications.

Legal situation. Radio listening had to be licensed and

the owner of a license had to pay a “broadcast fee”
(which is still the case in Germany). Unlicensed reception
was punished acc. to the “Law on Telegraphy” [3]. On
the other hand the owner of a license had the right to ask
for interference-free reception. A legal basis to fight radio
interference was given by the Law on Telecommunica-
tion Installations
, published on 14 Jan 1928 and by the
Citizen’s Rights Book (BGB) with paragraphs on the
protection of property. The request of experts for the
creation of a special law against broadcast interference
was however not fulfilled. The radio assistants solved
approx. 270 thousand interference cases between 1929
and 1932 by achieving mutual understanding between the
parties involved. Between 1927 and 1932 only a total of
130 cases had to be solved by the courts of justice and
88% of these ended in favour of the radio listeners.

RFI Regulation. The national authority on the alloca-

tion of radio frequencies was entrusted to the MPT. This
entailed the responsibility to keep the spectrum clean.
The PTT authorities were involved from the beginning in
the process of finding solutions to broadcast interference
as can be seen from the above. But the authorities only in
some cases dealt with the definition of test methods and
limits.

On 1 Oct. 1932 the MPT started the official Broadcast

Interference Service as a branch of the Telephone Dis-
turbance Service. The predecessor of the FTZ was in-
volved in the associated technical-scientific research. In
1938 both branches were separated. Fig. 1 shows the
number of radio listeners and the number of interference
complaints between 1930 and 1952. In spite of the fast
increasing number of radio listeners (4,5 millions in 1932 
and 14,3 millions in 1940) the number of interference
complaints could be kept constant, still at a high level.

German National Standards were developed by the

radio interference committees of the VDE [3]. As men-
tioned above, the VDE started to work on RFI in 1924.
VDE 0759 on construction and test of rf medical equip-
ment was published in 1928. As no objective test meth-
ods were available, a subjective method was used,
applying a comparison with good radio reception. The
next standards were VDE 0870/1933 “Guidelines for
capacitors in broadcast and interference suppression
technology”, VDE 0873/1934 “Guidelines on measures
in supply line installations for the reduction of interfer-
ence to broadcast reception” and VDE 0874/1934
“Guidelines for measures in machines and apparatus for
the reduction of interference to broadcast reception”.
Based on these, VDE 0875/1941 “Rules for the suppres-
sion of radio frequency emissions of electrical machines
an apparatus with nominal powers up to 500 W” was
published. It became clear that it did not make sense to
specify the suppression components, but to develop ob-
jective methods of measurement. Obviously based on the
work in CISPR, two specifications were published in
March 1942: VDE 0876 “Specifications for apparatus for
the measurement of disturbance voltage” defining the
measuring receiver with quasi-peak detector for a fre-
quency range of 0,1 to 20 MHz and VDE 0877 “Methods
of measurement of disturbance voltage” defining the
Artificial Mains V-Network (LISN) with 150 

ȍ imped-

ance between line and ground – in contrast to the CISPR
ǻ-network (see below). No justification has been found
for the preference of the V to the

ǻ-network. In VDE

0878/8.1943, all the experience was included in new
“Rules for the suppression of radio disturbance from
machines, apparatus and installations”, which does away

Statistics of Complaints

1

10

100

1000

10000

100000

30

35

40

45

50

Year

x1

00

0

No of Listeners
No of complaints

Fig. 1: The numbers of radio listeners and interference
complaints in Germany between 1930 and 1952. 

Due to the work of the broadcast interference service,

statistics of complaints are available. The main sources
of interference before 1939 were small motors and elec-
trical tools in household and small business (30%), medi-
cal electrical equipment (decreasing from 12% to 4%),
power supply networks (12%), erroneous receiving sys-
tems (32%) and atmospheric resp. undefined sources of
interference (16%) 

84

background image

with all subjective test methods and applies the objective 
method of measurement of the disturbance voltage. Tak-
ing this into account, VDE 0875/11.1951 replaced VDE 
0878. The introduction of FM audio and TV broadcast in 
the VHF frequency range required a limitation of emis-
sions from ISM equipment, which led to the publication 
of VDE 0871 Part 1/9.1952.

In 1949, Germany published the Law on Radio Fre-

quency Equipment (Hochfrequenzgerätegesetz, HFrG) 
which stated that the user of apparatus which generates or 
uses electromagnetic energy in the frequency range of 
10 k to 3000 GHz (radio frequency apparatus) needed a 
permit. There were individual and general permits. Per-
mits were granted only if the apparatus fulfilled the Tech-
nical Specifications of the PTT, which were - with some 
exceptions - identical with the limits of VDE 0871 (for 
NB disturbance, later also digital devices), VDE 0875 
(for BB disturbance) and VDE 0879 (for motor vehicles). 
In the 1980’s the VDE 0878 for telecommunication 
equipment and ITE was added. General permits for the 
operation of broadcast receivers, with limits defined in 
VDE 0872, were still based on the Law on Telecommu-
nication Installations, using an “FTZ-mark”. General 
permits and the conditions under which these permits 
were granted, were published in the Official Gazette 
(Amtsblatt) of the MPT as decrees (in German: Ver-
fügungen (“Vfg”)). An important step was the publication 
of  Vfg 478/1981, setting into force immunity require-
ments for broadcast receivers developed by the FTZ. The 
reason was that one of the interference problems always 
had been the lack of immunity of receiving equipment to 
conducted or radiated EMI. Later, similar requirements 
were included in VDE 0872 parts 2 to 5 and CISPR 20. 
For a long time, the VDE Testing and Certification Insti-
tute had been accepted as the only testing authority in 
Germany, issuing the radio protection mark (f-mark).
Many details about the situation around 1985 can be 
found in [4]. 

Like other NCs, the VDE committee on RFI continued 

to develop national standards in liasion with the CISPR 
and the CENELEC until about 1989, when the Vilam-
oura-Agreement  
of 1988 came into force. European 
NCs henceforth had to ask other CENELEC NCs, whe-
ther they were interested in specific standardisation pro-
jects, thus avoiding the creation of barriers to trade and 
preparing for the Internal European Market in 1992.  

Some history on RFI/EMC standards and regulatory 

activities in other European Countries 

Until about 1961, German Democratic Republic 

(GDR) representatives used to take part in West German 
NC meetings. Only after that, the GDR decided to de-
velop their own standards, which resulted in a set of 17 
RFI-relevant  TGL  20 885/1 … 21  standards.  Some  of 
them were closely related to CISPR standards, some were 
added, e.g. for traction systems and power stations [7]. 

Some information is available about Italy: they trans-

posed the EEC Directives 889 and 890 of 1976 into Na-
tional Law and in 1985, the immunity requirements for 
broadcast receivers became mandatory in the frame of a 

National Law [8]. The IMQ-mark was the Italian equiva-
lent of the German f-mark. 

In  The Netherlands the Minister van Waterstaat (of 

Public Works) decided to start an investigation in the 
problem of radio interference in 1931 and initiated the 
establishment of the Radiostoringscommissie which re-
sulted in the first legislation related to radio interference 
the so-called “Radiostoringsreglement” in 1935. The PTT 
as a governmental organisation had to deal with the com-
plaints and to exercise supervision [5]. 

In  Poland, work on radio interference started in 1935. 

The first standard PN/E-58 on “Guidelines for the sup-
pression of interference to broadcast reception due to 
various electrical appliances” was published in 1937. 
After WWII, everything needed reconstruction. In order 
to deal with RFI, a research laboratory was installed in 
the Institute of Telecommunication in Wroclaw in 1956 
by W. Rotkiewicz. A legal framework for RFI reduction 
was the Telecommunication Law of 1962. Rotkiewicz 
also chaired the standardizing committee and worked in 
close cooperation with other COMECON countries (e.g. 
Czechoslowakia with T. Dvorak [e.g. 19], later the foun-
der of the Zurich EMC symposium) and in 1972 the first 
Wroclaw EMC Symposium was organized, which ap-
peared to be the 1

st

 regular EMC symposium in Europe. 

From Switzerland material is available from the 1930’s 

and one of the first European decrees specifically on RFI 
was published in Jan. 1935 [21]. Many contributions to 
international standardisation were provided by members 
of the Swiss NC [22]. Also many committee chairmen 
both in CISPR and in TC77 came from Switzerland. Not 
being a member of the EU or the EEA, Switzerland still 
applies the European EMC Directive. The Bundesamt für 
Energiewirtschaft (Federal Office for Power Industry) is 
the Competent Authority. 

For the United Kingdom, many details about the early 

history of RFI can be found in [12]. Many papers on RFI 
were published in the 1920’s as the BBC was established 
in 1922. In 1933 the IEE formed a committee on RFI. 
The 1

st

 standard was BS 613 “Components of Radio In-

terference Suppression Devices” in 1935 and BS 727 on 
“Characteristics of Radio Interference Measuring Instru-
mentation” as well as BS 800 on “Limits of Radio Inter-
ference” were published in 1937. National legislation was 
available as the Wireless Telegraphy Act of 1949. 

History of the CISPR 

There was general agreement that the most important 

international problem was to secure uniformity in the 
methods of measurement and in the specification of limits 
to avoid difficulties for the exchange of goods and ser-
vices [10]. In 1933 an ad-hoc conference of interested 
international organisations was held in Paris to decide 
how the subject of radio interference should be dealt with 
internationally. It was agreed to form a Joint Committee 
of the International Electrotechnical Committee (IEC) 
and the UIR. The 1

st

 meeting of the CISPR (then called 

“Comité International Spécial des Perturbations Radio-
phoniques” (only in 1953 in view of the importance of 

85

background image

television, the last word was replaced by “Radioélectri-
ques”) was in June 1934 in Paris, with representatives of 
6 national committees of the IEC (Benelux, France, Ger-
many and UK), the UIR and of other international organi-
sations as the International Union of Producers and 
Distributors of Electrical Energy (UNIPEDE), the Inter-
national Conference on Large High Tension Electric 
Systems (CIGRE), the International Union of Railways 
(IUR) and of the World Power Conference. The Comité 
Consultatif International de Radio (CCIR) did not wish to 
become a full member. In the first meeting two Subcom-
mittees (SCs) (A on limits and B on measuring methods) 
were founded [9]. The proposal to “measure the high-
frequency interference voltage at the terminals of the 
interfering electrical appliance” and to “evaluate the at-
tenuation of the interference between the source and the 
input terminals of a receiver on the basis of statistical 
experimental data” was proposed by Germany and The 
Netherlands. International work continued until 1939 
(with meetings held in Berlin Dec. 1934 and April 1935, 
in London Nov. 1935 and May 1936, Brussels in March 
and Dec. 1937 and in Paris in July 1939). The recom-
mendations of CISPR were contained in the proceedings 
of the meetings and Reports RI Numbers 1 to 8 cover the 
period up to 1939. 

The  CCIR did not become a CISPR member but later 

(in 1966) they adopted a recommendation (433), that as 
far as possible, administrations should take into account 
the recommendations, reports and publications of the 
CISPR and that national regulation concerning interfer-
ence suppression should be based on the measuring meth-
ods and apparatus described by the CISPR. There was 
and is a clear division of work: interference between 
radio services or between transmitters of the same service 
is in the province of the CCIR (now ITU-R) and not the 
CISPR. The member nations of  the ITU have signed the 
International Telecommunications Convention, urging 
the national administrations to keep radio interference 
levels as low as possible and which is a basis for national 
laws on interference suppression.  

Agreement was reached on the CISPR delta network 

that makes it possible to measure the symmetrical (differ-
ential mode) and asymmetrical (common mode) compo-
nent of the disturbance voltage [10]. In 1937, provisional 
limits were proposed for the symmetrical voltage of 3 mV 
from 160 to 240 kHz and of 1 mV from 550 to 1400 kHz 
and for the asymmetrical voltage of 1,5 mV both from 
160 to 240 kHz and from 550 to 1400 kHz. In 1939 
twelve copies of the 1

st

CISPR measuring receiver (de-

signed in Belgium) were ready. Its frequency range in-
cluded the long wave and medium wave bands (150 to 
1500 kHz) and it had essentially the characteristics of 
today’s CISPR quasi-peak measuring receiver for Band B 
(0,15 to 30 MHz) with 9 kHz bandwidth and 1 ms charge 
time and 160 ms discharge time constant of the detector. 
The spread of results of measurement on a standard 
commutator motor in different countries was however 
disappointing. 

International  CISPR work restarted in 1946 – from 

now on with a strong delegation from the USA. Canada, 
Japan and since 1956 the USSR also took part in the 
meetings. In 1956 delegates from 17 countries took part 
in the meeting. In the meeting of 1946, it was recognised 
that measurements would be required for frequencies 
greater than 1.6 MHz and that major receiver design 
would be required for frequencies greater than 20 to 30 
MHz. At this meeting the measurement of the rf voltage 
at the mains terminals of an appliance using the 150 

ȍ V-

network was proposed [11]. In 1950, CISPR was decided 
to be formally constituted as a special committee of the 
IEC [12]. The recommendations and reports continued to 
appear in the proceedings of the Plenary meetings and the 
numbers RI 11 to 14 covered sessions in Paris 1950, 
London 1953, The Hague 1958 and Brussels 1959. Con-
siderable progress was made on the specifications for 
measuring receivers and techniques for the frequency 
ranges 0,15 to 30 MHz and 30 to 300 MHz and both 
CISPR publications 1 and 2 appeared in 1961. In 1953 
a steering committee was formed to aid the chairman and 
SC C on Safety Aspects of Interference Suppression was 
added. In 1958 eight working groups were established.
[10] gives the status of work up to 1970 as follows: 

- WG1 on Radio Interference Measuring Equipment 
which until 1967 defined all measuring receivers from 10 
kHz to 1000 MHz including publications 1 through 4. 

- WG2 on Interference from ISM equipment. Radiated 
emission limits were published as recommendations in 
the frequency range 0,15 to 1000 MHz. 

- WG3 on Interference from Overhead Power Lines and 
High Voltage Equipment 

- WG4 on Interference from Ignition Systems and Inter-
nal Combustion Engines. Until 1970, limits were given 
for 30 to 300 MHz. At this time limits were also consid-
ered up to 1000 MHz. Limits for interference to radio 
reception on the vehicle itself were under discussion but 
it took until 1995 when CISPR 25 appeared. 

- WG5 on Interference and Immunity Characteristics of 
Audio and TV receivers. 

- WG6 on Interference from Motors, Domestic Appli-
ances, Lighting Apparatus and the like. Interference in the 
frequency range up to 300 MHz was a difficult item be-
cause different countries used different measurement 
methods, ranging from open site field-strength measure-
ments, stop filter tuned supply cord substitution meas-
urements, earth current measurements to terminal voltage 
measurements. Finally agreement was reached on a 
method proposed by Meyer de Stadelhofen of Switzer-
land, Chairman of the WG [20]. Also limits have been 
approved for thermostatically controlled apparatus emit-
ting discontinuous disturbance, e.g. irons and refrigera-
tors using the counting of clicks and applying click 
weighting. 

- WG 7 on the Impact of Safety Regulations on Interfer-
ence Suppression. The chairman of this WG was a mem-
ber of the IEC Committee on Safety (A.C.O.S.). 

86

background image

- WG 8 on Statistical Methods and Correlation between 
Measured Value and Disturbing Effect. A recommenda-
tion on the Significance of a CISPR limit was approved in 
Leningrad (1970) which implies that type approval may 
be made on the basis of measurements of a single sample 
whereas conformity of production should be ensured on a 
statistical basis. 

- WG 9 on Terminology which contributed a chapter to 
the International Electrotechnical Vocabulary (IEV) 

- WG 10 on Lists of Complaints. This was necessary in 
order to harmonize the national lists of complaints for 
better comparability. 

In the period of 1961 – 1973 CISPR saw the appear-

ance of Recommendations in Pub. 7 (1966), Reports and 
Study Questions in Pub. 8 (1966) and National Specified 
Requirements and Legal Regulations in Pub. 9 (1966). 
Besides the Pubs. 3 and 4, Pub. 5 specifying the peak, 
average and rms detectors appeared in 1968. In 1973 
CISPR was reorganized by reconstituting the WGs as 
Technical SCs, each with its own national secretariat, 
thus sharing the burden which hitherto had fallen to the 
CISPR secretariat. 

Period 1973 to 1986. In 1973 the decision was made to 

incorporate all measuring receiver details and the com-
mon measurement techniques into one publication (No. 
16) covering the work of SC A and to create self-
contained publications including reports, recommenda-
tions and limits and specialised measurement methods. 
Thus Pubs. 11 to 15 came into existence on the subjects 
of ISM, motor vehicles, radio and TV receivers, house-
hold appliances and fluorescent lighting and covering the 
work of SCs B, D, E and F. The work of SC C on high 
voltage lines appeared at a later stage in Pub. 18. It had 
also become evident that digital electronic equipment, 
microprocessors etc. could be a serious source of inter-
ference to radio reception and this was recognised in 
1975 by creating a working group reporting first to the 
steering committee and later to SC B. This working group 
was reconstituted in 1985 as an SC with the terms of 
reference to include Information Technology Equipment 
and was responsible for Pub. 22, the 1

st

 edition of which 

appeared in the same year, doing away the problem of 
NB/BB discrimination and establishing the first time 
limits for QuasiPeak and Average detections in conducted 
emission measurements. Pub. 20 for the immunity of 
sound and TV broadcast receivers, the first international 
commercial immunity product standard was published in 
1985 to which the Italian NC provided many contribu-
tions [8]. 

Period 1987 to 2004. In these years, much effort was 

expended in the development of CISPR Pub. 16 to be-
come “The CISPR Handbook”. Measurements in the field 
of EMC for a long time were known as “estimation with 
expensive test equipment”. Therefore the work concen-
trated on improving the reproducibility of measurement 
by adding requirements for test site validations, require-
ments for measurement uncertainty and by improving the 
definitions of the test methods and setups. Major steps 
forward were the publications of CISPR 16-4:2002 on 

measurement uncertainty and of reports on compliance 
uncertainty in CISPR 16-4-1:2004. SC G developed the 
CISPR 24:1997 “Immunity of ITE”, using the test meth-
ods in IEC 61000-4-x as basic standards. Also SC F pub-
lished CISPR 14-2:1997 “Immunity of Household 
Equipment etc.” In 1999 CISPR created a new SC H on 
the development of limits. In 2000 SC C was dissolved 
and the merging of SCs E and G was decided to form a 
combined SC I taking into consideration that multi-media 
equipment was in the scope of E and G. Most of the 
CISPR work is well described by the publications devel-
oped between about 1990 and today: 

10:2001-08  Rules and Procedures of CISPR  
11:2004-06  Limits and measurement methods: ISM 
12:2001-09  Automobiles and ignition systems 
13:2003-03  Emission of sound and TV receivers 
14-1:2002-10 Emission household appliances etc. 
14-2:2001-11 Immunity of household appliances etc. 
15:2002-10  Emission of fluorescent and lighting eq. 
16:2003…4  Equipment, methods and reports of EMC 

testing (14 parts) 

17:1981-01  Test methods of EMI filters 
18:1982…96 Overhead power lines, phenomena, limits, 

test methods, suppression (3 parts) 

19:1983-01  Microwave oven substitution measurement 
20:2002-02  Immunity of sound and TV broadcast rec. 
21:1999-10  Mobile radio reception in presence of im-

pulsive noise 

22:2003-04  Emission of IT equipment 
23:1987-12  Determination of limits for ISM equipment 
24:1997…02 Immunity of IT equipment 
25:2002-08  Emission limits for radio reception in cars 
28:1997-04  ISM equipment – guidelines for emission 
29:2004-08  TR: Immunity of TV receivers – methods 

of objective picture assessment 

30:2001-02  TR: Test method on EM emissions from 

fluorescent lamps 

31:2003-10  Database on the characteristics of radio 

services 

Generic emission standards: 
CISPR 61000-6-3:1996-12 Emission for resid., commerc. 

and light-industr. environments 

CISPR 61000-6-4:1997-01 Emission for industrial env. 

A short history of IEC TC77 

TC 77 was established in 1973 and held its 1

st

 meeting 

in Bucharest 1974 [13]. Its title was “EMC between elec-
trical equipment including networks” and its scope: To 
prepare international recommendations concerning elec-
tromagnetic compatibility of electrical and/or electronic 
equipment between themselves and with the mains supply 
network.” The first publications – developed in 7 working 
groups - were IEC 555-1, -2, -3: Disturbances in supply 
systems caused by household appliances and similar elec-
trical equipment (1: Definitions, 2: Harmonics, 3: Voltage 
fluctuations) and IEC 725: Considerations on reference 
impedances 

87

background image

1981 1

st

 reorganisation of TC77 with two SCs: 

SC 77A Equipment connected to the public low-voltage 
supply system (1

st

 meeting 1983) 

SC 77B Industrial and other non-public networks and 
equipment connected thereto (1

st

 meeting 1983). Publica-

tions were IEC 816: Guide on methods of measurement 
of short duration transients on low-voltage power and 
signal lines and IEC 868: Flickermeter – Functional and 
design specifications. Before 1991 a great number of the 
publications 61000-x-y reached a mature stage, although
not yet published. Also TC 77 started to deal with high-
frequency phenomena. 

1991 Enlargement of TC 77 – Setting up of SC 77C: 

Immunity to high altitude nuclear electromagnetic pulse 
(HEMP) (1

st

 meeting in 1992) and 2

nd

 reorganisation of 

TC 77: Phenomena/frequency range oriented with a new 
structure: 

TC77  Parent committee dealing with general matters 

like terminology and safety 

SC 77A  Low frequency phenomena (f 

” 9 kHz) 

SC 77B High frequency continous and transient phenom-

ena (f 

• 9 kHz in coordination with CISPR) 

SC 77C  Immunity to HEMP 

Publications (standards and reports) developed by TC 77 

IEC 61000 Electromagnetic compatibility:  

Part 1 General  
-1-1:1992-05 Fundamental definitions and terms 
-1-2:2001-06 Methodology for functional safety 
-1-3:2002-06 The effects of HEMP to civil equipment 
-1-5:2004-11 HPEM effects on civil systems 

Part 2 Environment 
-2-1:1990-05 Low frequency (LF) conducted disturban-

ces and mains signalling 

-2-2:2002-03 Compatibility levels for LF conducted dis-

turbances (CD) 

-2-3:1992-10 Radiated and non-network-frequency-rela-

ted conducted phenomena 

-2-4:2002-06 Compatibility levels in industrial plants for 

LF CD. 

-2-5:1995-09 Classification of EM environments 
-2-6:1995-09 Emission levels in power supply (PS) of 

industrial plants for LF CD. 

-2-7:1998-01 LF magnetic fields in various environments 
-2-8:2002-11 Voltage dips, short interruptions and statis-

tical measurement results 

-2-9:1996-02 Description of HEMP environment – radi-

ated disturbances 

-2-10:1998-11 Description of HEMP environment – CD 
-2-11:1999-10 Classification of HEMP environment.  
-2-12:2003-04 Compatibility levels for LF CD and sig-

nalling in public MV PS systems 

Part 3 Limits

(-3-1) Overview of emission standards and guides 
-3-2:2004-11 Harmonic current limits (current 

” 16 A) 

-3-3:2002-03 Voltage fluctuation limits (current 

” 16 A) 

-3-4:1998-10 Harmonic current limits (current 

• 16 A) 

-3-5:1994-12 Voltage fluctuation limits (current 

• 16 A) 

-3-6:1996-10 Assessment for distorting loads in MV and 

HV power systems 

-3-7:1996-11 Assessment for fluctuating loads in MV and 

HV power systems 

-3-8:1997-09 Signalling on LV installations – emission 

levels etc. 

(-3-9) Interharmonic current limits (current 

” 16 A) 

(-3-10) Emission limits in the frequency range 2 … 9 kHz 
-3-11:2000-08 Limits of voltage changes, fluctuations 

and flicker (I 

” 75 A) 

-3-12:2004-11 Limits for harmonic currents for equipm. 

connected to public LV PS systems (16 A < I 

” 75 A) 

Part 4 Test Methods
-4-1:2000-04  Overview of immunity tests 
-4-2:2001-04  ESD immunity tests 
-4-3:2002-09  Radiated RF EM field immunity test 
-4-4:2004-07  EFT/burst immunity test 
-4-5:2001-04  Surge immunity test 
-4-6:2004-11  Immunity to conducted disturbances, 

induced by RF fields 

-4-7:2002-08  Guide on harmonics and interharmonics 

(HI) meas. and instrumentation 

-4-8:2001-03  Immunity to power frequency magn fields 
-4-9:2001-03  Pulse magnetic field (MF) immunity test 
-4-10:2001-03  Damped oscillatory MF immunity test 
-4-11:2004-03  Voltage dips, short interruptions and volt. 

variations immunity tests a.c. 

-4-12:2001-04  Oscillatory waves immunity test 
-4-13:2002-03  HI incl. mains signalling at ac power port 

LF immunity tests 

-4-14:2002-07  Voltage fluctuations immunity test 
-4-15:2003-02  Flickermeter, functional and design specs 
-4-16:2002-07 Test for immunity to conducted, CM 

disturbances in 0 Hz to 150 kHz 

-4-17:2002-07  Ripple on d.c. input power port immunity 
-4-20:2003-01  Emission and immunity testing in TEM 
-4-21:2003-08  Reverberation chamber test methods 
-4-23:2000-10 Test meth. for protective devices for 

HEMP and other rad. disturbances 

-4-24:2000-10 Test meth. for protective devices for 

HEMP conducted disturbances 

-4-25:2001-11  HEMP immunity test meth. for equipment 

and systems 

-4-27:2000-08  Unbalance immunity test 
-4-28:2002-07  Immunity to variation of power frequency  
-4-29:2000-08  Voltage dips, short interruptions and volt. 

variations immunity tests d.c. 

-4-30:2003-02  Power quality measurement methods 
-4-32:2002-10  HEMP simulator compendium 

Part 5 Installation and Mitigation Guidelines

-5-1:1996-12 General 

considerations 

-5-2:1997-11  Earthing and cabling 
-5-3:1999-07  HEMP protection concepts 
-5-4:1996-08  Specs. for protective devices against 

HEMP radiated disturbance 

-5-5:1996-02  Specs. for protective devices for HEMP 

conducted disturbance 

-5-6:2002-06  Mitigation of external EM influences 
-5-7:2001-01  Degrees of protection provided by enclo-

sures against EM disturbances 

88

background image

Part 6 Generic Standards 
-6-1:1997-01  Immunity for residential, commercial and 

light-industr. environments 

-6-2:1999-01  Immunity for industrial environments 
-6-5:2001-07  Immunity for power station and substa-

tion environments 

-6-6:2003-04  HEMP immunity for indoor equipment 

Joint Task Forces (JTFs) of CISPR SCA with SC77B 

were established in 1997 to develop standards of common 
interest, one for emission and immunity testing in TEM 
waveguides and one for reverberation chamber test meth-
ods (see IEC 61000-4-20 and -21). Further two JTFs 
were established in 2002, one for the validation of fully 
anechoic rooms (FARs) for emission and immunity test-
ing and one for uniform measurement arrangements for 
radiated emission and immunity testing. 

Origin of IEC 61000-4-1, -2, -3, -4 and -5: these stan-

dards have their origin in IEC 65A/WG4, which started in 
1978 and published the first edition of IEC 801-2 and -3 
in 1984, -4 in 1988 and -5 in 1991. In the 1990’s IEC 
801-x standards were revised and published first as IEC 
1000-4-x and later – accepting a structure used by 
CENELEC – as IEC 61000-4-x. IEC 65A/WG4 is now 
developing EMC standards IEC 61326-x for electrical 
equipment for measurement, control and laboratory use in 
cooperation with IEC TC 66. 

Another international committee on EMC is ISO 

SC22/3. They are developing ISO 7637 for conducted as 
well as ISO 11451 and ISO 11452 on vehicle and com-
ponent radiated immunity tests [14]. 

CENELEC.  The original 6 countries of the European 

Economic Community (EEC) had established a technical 
committee to develop common standards for radio inter-
ference and to eliminate possible barriers to trade within 
the Common Market. When the EEC expanded to nine 
countries in 1973 the European Standards Committee 
(CENELEC) was formed with the membership extended 
to include the countries of the European Free Trade Area 
(EFTA). The CENELEC TC-CISPR developed the first 
two European Standards dealing with household appli-
ances and fluorescent lighting, which were published as 
Directives 76/889/EEC and 76/890/EEC in 1976 which 
already offered the manufacturer’s declaration of confor-
mity. These were implemented in the National Legislation 
of the nine EEC countries [11], e.g. in Germany as the 
Law on Radio Interference (Funkstörgesetz) of 1978. The 
technical specifications were given in VDE 0875-1 and -
2. Later the CENELEC – with the advent of the European 
EMC Directive decided to adopt CISPR standards as EN 
55 0xy and IEC EMC standards as EN 61 000-x-y. 
Where no international standards were available, 
CENELEC TC 110 (now 210) developed EN 50 xyz, e.g. 
the first Generic Emission Standards EN 50 081-1 and -2. 
ETSI standards [15] later were published as EN 30w xyz, 
e.g. EN 300 386 on the EMC of telecommunication net-
works equipment. Presently CENELEC and ETSI have 
got the mandate to develop an EMC standard for tele-
communication networks including telephone, coaxial 
and PLC networks. 

The  European EMC Directive 89/336/EEC [16] is a 

new-approach directive in that it does not contain techni-
cal requirements but defines protection goals only: emis-
sion  and immunity. Compliance with the protection 
requirements is presumed if equipment complies with 
harmonized European standards, the reference numbers 
of which have been published in the EC Official Journal. 
In normal cases, the manufacturer or the importer writes 
the EC declaration of conformity and affixes a “CE”-
mark of conformity to the product. The former national 
regulators have the task of market supervisors. Special 
provisions apply if harmonized standards have not been 
used. In contrast to this, the Automotive EMC Directive 
95/54/EC  
updating 72/245/EEC to technical progress, 
contains detailed technical requirements. Both EMC Di-
rectives went into force on 1 January 1996. Recently 
Directive 95/54/EC has been replaced by 2004/104/EC 
[18] and a new EMC Directive [17], replacing 
89/336/EEC, is close to publication. 

III P

ART 

2:  USA C

OMMERCIAL

 EMC R

EGULATORY 

A

ND

 S

TANDARDS 

H

ISTORY

The Communications Act of 1934 in the United States 

gave the US Federal Communications Commission the 
authority to protect the use of the radio spectrum from 
interference from radio transmissions that were not so-
called licensed users of the spectrum.  For many years, 
the requirement for reducing interference from low power 
incidental radiators (those generating RF but not for use 
in broadcasting this energy to receivers) was 15 uV/m at a 
distance of a wavelength divided by 2 pi.  This general 
requirement served well until a decade or so after WW II 
where as the frequency of digital devices started to in-
crease to well beyond 100 MHz, the measurement dis-
tance to show compliance to the 15 uV/m limit became 
less than a meter away and clearly became a measurement 
in the near field of the RF source.  As the frequencies 
became higher, the measurement distance approach the 
source so close as to make it impossible to measure using 
antennas designed to operate in those frequency ranges. 
Thus it was clear that this limit and measurement method 
had outlived its usefulness. 

Art Wall, Deputy Chief of the FCC Labs, and major au-

thor of the much discussed FCC Part 15 rules on low 
power RF devices has provided a clear description of the 
improvement in the interference control which became 
needed in the 1960’s and 1970’s.  From his paper, a time-
line of the historical FCC rules for digital devices can be 
drawn and are now reviewed. [23] 

In this time frame, TV interference became to increase 

caused by the new personal computers that started to be 
used.   Other sources of interference initially identified 
were electronic coin operated video games which caused 
interference to highway police communications at 42 
MHz, and electronic cash register systems interfering with 
safety communication systems, as well as the new per-
sonal computers introduction.   By the late 1970’s the 
FCC’s field engineers expended significant time resources 
to track down these interference sources. 

89

background image

In 1976, the FCC started a proceedings (FCC Docket 

20780) on limiting radiated and conducted emissions 
from computers. [24] The changes were to the existing 
Part 15.7 of the FCC rules which while were meant to 
address computer emissions, it was inadequate to handle 
the new digital devices and speeds in computers of the 
era.  Then in 1977 the Computer Business Equipment 
Manufacturer (CBEMA) (later renamed Information 
Technology Industry Council (ITIC)) responded to the 
proceedings with data showing the if limits were to be 
introduced, there needed to be a 10 dB difference be-
tween limits allowed in a residential environment com-
pared to that in a commercial environment arguing that 
the higher limit would be tolerated in more noisy com-
mercial locations. The FCC adopted much of the propos-
als in the CBEMA report and then established limits 
based largely on the CBEMA surveyed data from existing 
computer installations.  The limits were set such that the 
highest computer emissions from the over 100 prod-
ucts/installations measured would have to be suppressed, 
yet the majority would still meet the new limits and hence 
was achievable with current technology at that time.  

All this activity led to the now famous FCC Docket 

20780 in 1979 which was the first report and order of the 
FCC that set technical standards (emission limits) for 
computing equipment. [24] This set the administrative 
and technical standards, which have to be met for digital 
devices to be legally marketed in the USA. Subsequent to 
this R&O, there were other FCC rulings that provided 
product exemptions, broadened the application to digital 
devices other than just computing devices, and changed 
the referenced clauses in the FCC Rules under Part 15 of 
the Code of Federal Regulation.  The exemptions still 
hold today and include: 

a.

Digital devices used in transportation vehicles 

b.

Digital devices used in commercial and industrial 
control and power equipment 

c.

Digital devices used in appliances (here appliances 
are those used in the home such as mixers, refrig-
erators, etc.) 

d.

Commercial and industrial test equipment 

e.

Supervised medical digital devices 

f.

Digitals devices with total power less than 6 nW 

g.

Joysticks and similar computer controllers 

h.

Digital devices with internally generated and used 
frequency sources less than 1.705 MHz 

This paper will not go into the limits or their application 

to products as that is a subject of considerable discussion, 
which is described in reference [23].  The net effect is 
that radiated emission limits were in effect between 30 
MHz and 40 GHz for close to a quarter century as of this 
writing. Limit deliberations above 1 GHz are presently 
being debated and experiencing difficulty in being ac-
cepted with a positive national committee vote in the 
International Electrotechnical Commission (IEC) Special 
International Committee Radio Interference (CISPR) and 
in regional areas such as the European Union.  So in the 
meantime, the FCC limits are still the prevailing regula-
tory requirement—at least for marketing products in the 

USA.  It is further interesting to note that the conducted 
emission limits between 150 kHz and 30 MHz and the 
radiated emission limits between 30 and 1000 MHz are 
now harmonized with that of CISPR 22 and its counter-
part EN55022.  The FCC limits above 1 GHz however 
remain.  Also it should be reported that the method of 
measurement of these emissions is via the use of ANSI 
C63.4-2003 and not that contained in CISPR 22 or 
EN55022.  There are major similarities between CISPR 
22 and C63.4, but the differences are such that attention 
needs to be paid to using only C63.4 for compliance with 
the FCC Rules.   Two examples of the differences are that 
C63.4 does not have telecom port measurement require-
ments nor does it allow a choice between using a 40 cm 
high table or a 80 cm high table for performing conducted 
emission measurements—both of these are allowed in 
CISPR 22/EN55022. 

Future FCC regulatory Activity:

In reference [23], the author indicates that major areas 

of FCC regulatory activity are focusing on RF sources 
operating above 1 GHz.  These include: 

a.

Mobile satellite services 

b.

Digital audio radio services 

c.

Global positioning systems 

d.

Ultra-Wideband transmissions 

e.

Unlicensed National Information Infrastructure de-
vices 

f.

Devices that cannot transmit if an authorized radio 
service is detected (listen before talk) 

While the above services are in the band between 1 and 

6 GHz, there are also allocated bands well into the 10’s of 
GHz and above range that has yet to be fully exploited.   

History of IEEE EMC Society EMC standards 

For over 50 years, there have been EMC standards as-

sociated with the IEEE, even before the IEEE was estab-
lished in 1963. Table 1 summarizes the standards activity 
of the EMCS which is now further elaborated [25]. Earli-
est records show that the first EMC standard, which be-
came the responsibility of the IEEE EMC Society, was 
Standard 140, which was released in 1950. The subject 
was a recommended practice for minimization of interfer-
ence from radio-frequency heating equipment.  This 
document recommended ways to minimize emissions 
from RF heating equipment by provided procedures to be 
used when interference is encountered, locating the 
sources of the interference and then applying corrective 
measures such as source frequency shifting, automatic 
frequency control, and improving source shielding includ-
ing tightening of shielding fasteners around the heating 
equipment doors.

In 1952, a companion Recommended Practice was pub-

lished as Standard 139 on In-situ measurements of RF 
from industrial, scientific and medical equipment.  This 
was an a continuation of the work in Standard 140 but 
more specifically addressed in-situ measurements of the 
emissions from the ISM equipment on the user’s prem-
ises.  It includes the effects of nearby RF sources for 

90

background image

which its emissions may interact with the ISM emissions 
to create harmonically related spurious frequencies. 

In 1951, there was concern for determining the interfer-

ence potential of spurious emissions from FM and TV 
broadcasting receivers creating interference.  These 
sources included local oscillator circuits, Intermediate 
frequency amplifier, oscillators associate with cathode-
ray-tube operation, TV sweep circuits, etc.  Standard 187 
provided a way to measure these spurious emissions at an 
open field test site. 

By 1961, there was a need to have a common repeatable 

way to measure conducted emissions into the power line 
from the same FM and TV broadcasting receivers.  This 
lead to Standard 213 which provided the measurement 
procedure in the frequency range 300 kHz to 25 MHz 
using a Line Impedance Stabilization Network (LISN) 
using a 5 uH, 50 ohm system.  A companion standard 
containing the construction details for this LISN was 
published the same year as Standard 214.  (By 1987, both 
standards were included in the revised standard 213.) 

In 1969, there was a significant standards introduced.  It 

was Standard 299, which provided a method for measur-
ing the effectiveness of large electromagnetic shielding 
enclosures.  The frequency range that it was applicable 
was 14 kHz to 18 GHz but had suggestions to extend the 
range down to 50 Hz and up to 100 GHz.  This standard 
had more applicability than MIL STD 285 which had 
been the referenced standards for military use for years.  
For example, Standard 299 introduced the use of a test 
plan prior to starting the effectiveness measurements.  It 
also provided guidance on frequencies to test other than 
those at the lowest natural resonant frequency of the en-
closure. 

Going into the 1970’s, the EMC Society standards 

committee started work on other EMC measurement stan-
dards in particular.  At the end of 1974 and into 1975, the 
next standard by the IEEE EMC Society dealt with the 
use of an impulse generator to calibrate automatic spec-
trum scanning instrumentation of the day.  Interestingly, 
the use of impulse bandwidth given in Std 376 even today 
is being accepted for calibration of spectrum analyzers.  
So this ground breaking standard of over a quarter of a 
century ago is still of interest even today.  In 1971, 
worked with the IEEE Vehicular Society (then called 
Group as was the EMC Society), the Electronics Indus-
tries Association (now an Alliance), and the IEC to estab-
lish a standard to measure the spurious emissions from 
Land-mobile communication transmitters primarily in the 
25 MHz to 1000 MHz band.  This work was published in 
1980 as Standard 377.  In 1985, the EMC Society stan-
dards committee published a recommended practice for 
site survey measurements in the range 10 kHz to 10 GHz.  
This recommended practice introduced one of the first 
approaches to measuring RF ambient inside buildings as 
well as in obstruction free areas outside.  In 1983, the 
work shifted to developing measurement procedures for 
field disturbance sensors and RF intrusion alarms as 
Standard 475.  The radiated emission procedures covered 
the range of 300 MHz to 40 GHz while the power line 

conducted emission procedures addressed the 30 to 300 
MHz range. 

The 1990’s produced the next EMC Society standard 

that addressed simpler measurements of electric and mag-
netic emissions from video display units in the frequency 
range 5 Hz to 400 kHz.  This standard 1140 that was 
published in 1994 was similar to that published in Sweden 
at the time but used a lesser set of measurement points. In 
1998, the first guide to characterize the RF characteristics 
of conductive gaskets in the frequency range DC to 18 
GHz was published.  It contained several techniques and 
provided a guide to select the best method depending on 
the application. Two years earlier in 1996, the first IEEE 
standard on calibrations of field probes, excluding anten-
nas, in the frequency range 9 kHz to 40 GHz was pub-
lished.  It included the use of TEM cells, Helmholtz coils, 
open-ended waveguides, pyramidal horns and other tech-
niques for generating the calibration field. 

Currently, the IEEE EMC Society is working on new 

projects including the last 5 shown in Table 1.  The sub-
jects of these standards convey the essence of the pro-
jects.  In addition there are several study questions under 
consideration including  

a.

Development of standards supporting the next gen-
eration radio and advanced spectrum management.

b.

Support of a GTEM user group and standards that 
might proceed based on the group’s experience

c.

Review of wireless performance prediction for lo-
cal area networks standards. 

Further progress on these studies will be presented at the 
session. 

Table 1:  IEEE EMC Society Standards 

139-1988 
Recommended 
Practice  

Measurement of Radio Frequency 
Emission from Industrial, Scientific, 
and Medical (ISM) Equipment In-
stalled on User's Premises 

187-2003 
Standard  

Radio Receivers: Open Field Method 
of Measurement of Spurious Radia-
tion from FM and Television Broad-
cast Receivers  

213-1987 
(R1993, 1998) 
Standard  

Measuring Conducted Emissions in 
the Range of 300 kHz to 25 MHz 
from Television and FM Broadcast 
Receivers to Power Lines  

299-1997 
Standard  

Measuring the Effectiveness of the 
Electromagnetic Shielding Enclosure 

377-1980 
(R1991, 2003) 
Recommended  
Practice  

Measurement of Spurious Emission 
from Land-Mobile Communication 
Transmitters 

473-1985(R1991)
Recommended 
Practice  

Electromagnetic Site Survey (10 kHz 
to 10 GHz)  

475-2000 
Standard  

Measurement Procedure for Field-
Disturbance Sensors, 300 MHz to 
40 GHz. 

1140-1994 
(R1999) 

Test Procedures for the Measure-
ment of Electric and Magnetic Fields 

91

background image

Standard 

 

from Video Display Terminals 
(VDTs) from 5 Hz to 400 kHz  

1302-1998 
Guide  

Electromagnetic Characterization of 
Conductive Gaskets in the Frequency 
Range of DC to 18 GHz 

1309-1996 
Standard  

Calibration of Electromagnetic Field 
Sensors and Probes Excluding An-
tennas from 9 kHz to 40 GHz  

P1530
Recommended 
Practice  

Design and Construction of Calibra-
tion Artifacts for Cable and Connec-
tor Shielding Test Fixtures for 
Frequencies from 1 Hz to 10 GHz  

P1560
Standard  

Methods of Measurement of Radio 
Frequency Interference Filter Sup-
pression Capability in the Range of 
100 Hz to 40 GHz

P1597.1
Standard  

Validation of Computational Elec-
tromagnetics (CEM) Computer 
Modeling and Simulation 

IEEE P1597.2 
Recommended 
Practice  

IEEE for Computational Electro-
magnetics (CEM) Computer Model-
ing and Simulation Applications 

IEEE P1642 
Recommended     

Practice 

Protecting Public Accessible Com-
puter Systems from Intentional EMI 

Note:  P indicates project underway and is not yet a stan-
dard.

There were many more clarifications that can be further 

summarized in reference [27] 

History of standards of the ANSI Accredited Stan-

dards Committee C63 (EMC) 

Reference [26] contains an excellent summary of US 

EMC standards history, which dates back, primarily to the 
early 1940’s when there was issued in 1940 a series of 
reports, entitled: “Methods of Measuring Radio Noise”. 
These reports were developed by a joint coordinating 
committee (JCC) on radio reception between the Edison 
Electric Institute, the National Electrical Manufacturers 
Association and the Radio Manufacturers Association.  At 
this time the emphasis was to gather date on radio noise 
levels to serve as the basis for setting noise limits.  

In 1944, the JCC became a Sectional Committee C63 

under the American Standards Association which later 
became the American National Standards Institute, with a 
scope covering Radio-Electrical Coordination. After 
WWII, C63 published its first standards:  C63.1 on the 
subject of noise instrumentation specifications in the 
range 150 kHz to 20 MHz which was followed soon af-
terwards in 1950 by the first edition of C63.2 which pro-
vided specifications for radio noise measurement 
instrumentation. [26] Moving onto the 1950’s and 1960’s 
much EMC work focused on application to military EMC 
measurements.  ANSI C63.3 covered instrumentation for 
measuring emissions between 20 and 1000 MHz.  These 
instrumentations used peak detectors rather than the more 

common quasi-peak detectors found in IEC/CISPR docu-
ments even to this day.  

ANSI C63.4 covering the method of measurement of 

radio noise emissions first appeared in 1963 covering 
measurement methods of radio noise voltage and field 
strengths in the frequency range 150 kHz to 25 MHz.  In 
1981, this standard had a major revision to incorporate 
newer instrumentation and broader frequency ranges.  
The next edition in 1988 included a mechanism to show 
validate test sites, which was needed to resolve the prob-
lems of lack of repeatability of results from test site to test 
site.  This edition introduced for the first time the concept 
of site attenuation as the means to determine site irregu-
larities, test instrumentation calibration inadequacies and 
differences in tester approaches to determine site suitabil-
ity.   Heretofore these factors led to different test results 
for the same product measured at multiple test sites, 
which of course was highly undesirable.  A list of com-
panion standards was also introduced at the same time to 
aid in validating the radiated emission test site. These 
included ANSI C63.5 on receiving antenna calibration, 
ANSI C63.6 on the computation of errors in open area 
test site measurements, and finally, C63.7 which gave 
guidance on constructing open are test sites for perform-
ing radiated emission measurements as well as site valida-
tion measurements.  All four of these standards were 
approved for publication on the same day in June 1988 
which was a watershed day for introducing major docu-
ments to increase the accuracy and quality of radiated 
emission measurements.  

Based on the experience using the ANSI series of stan-

dards described in the previous paragraph, improvements 
were made to these standards throughout the 1990’s and 
into this century.  Notably was the 1991 version of C63.4 
which for the first time added much details on test setups 
for complex systems to increase repeatability as well as 
reproducibility of emission testing.  It also increased the 
frequency range to cover 9 kHz to 40 GHz.  This was a 
significant event as the previous standards covered only 
up to 1 GHz.  Specific measurement procedures were now 
identified for four types of products: 

a.

Information Technology Equipment 

b.

Intentional radiator 

c.

Unintentional radiators 

d.

Periodic intentional radiators. 

Only the details for ITE equipment were included with 

the other product classes under consideration. The 1992 
version of the standard picked up measurement methods 
for testing intentional radiators as well as unintentional 
radiators other than ITE.  Periodic intentional radiators 
were considered part of the intentional radiator scheme 
and hence that class was absorbed into the measurement 
methods for intentional radiators, whether operating con-
tinuously or periodically. In the next 10 years there were 
two more amendments that culminated in the 2003 edition 
of C63.4 which is presently the one referenced by the 
FCC for performing compliance testing for ITE, and a 
significant percentage of, but not all intentional and unin-
tentional radiating devices covered by their Rules. It is 

92

background image

interesting to note that the 2001 edition included for the 
first time the use of wideband TEM devices for a small 
class of products which fit within the device as an alterna-
tive to making emission measurements at an open area 
test site or equivalent.  In addition where possible, the 
standard also changed to harmonize where possible with 
the work of CISPR and its CISPR 22 document which 
itself was based on earlier versions of C63.4.   

The present 2003 edition added useful information that 

has the potential to reduce test time and complexity as 
well as clarified several points that users had presented to 
the committee. [27] The changes included: 

a.

Clarification that the text takes precedence of the 
test setup figures which are only examples for guid-
ance 

b.

Allowing the use of spectrum analyzers that do not 
fully meet CISPR 16 or ANSI C63.2 specifications 
but in case of dispute, such instruments fully meet-
ing these two specifications must be used. 

c.

Clarification of required test equipment calibration 
intervals 

d.

 Identifying how to test power packs which convert 
AC to DC which is then used by many products 
such as laptop computers 

e.

Providing a method for looping back cables be-
tween input and output ports of large floor standing 
equipment eliminating the need in some cases to be 
connected to other equipment in a typical installa-
tion 

f.

Warning that exploratory testing in a chamber that 
does not meet the normalized site attenuation re-
quirements is not a substitute for full spectrum test-
ing at a site that does meet NSA requirements. 

g.

Clarification of test frequencies to be used during 
intentional radiator testing. 

We now return to the activities in the 1980’s. In 1984 

the first of the next core of standards was published.  
ANSI C63.12 is the first and only C63 standard that has 
recommended limits.  The first edition was in 1984 
quickly followed by the 1987 version with international 
standards updates at the time.  It contained graphs of 
man-made radio noise power and field strengths near the 
surface of the earth for rural, residential and business 
areas based on data taken decades before.  It also con-
tained guidance on allocation of radiated and conducted 
emissions from components of a large system or product 
based on the number of components in the system and 
emission shielding attributes within the system lineup or 
the allocation of power used by the components. Radiated 
immunity test levels were also suggested.  Further 
changes in international and military immunity techniques 
and requirements prompted the 1999 edition. 

In 1991, ANSI C63.13 was published to meet the need 

for guidance in the basic understanding of EMI power-
line filters.  This document is still applicable as it pro-
vides insight on the difficulties in specifying technical 
characteristics of such filters not being measured at full 
power load and actual impedances of the product which is 
connected to it and hence the differences among manufac-
turers data application.  In 1993, C63 published its ESD 

guidance document with the intention to harmonize with 
the IEC 801-2 document at that time.  The ANSI guide 
provides test techniques for furniture discharge, statistical 
determination of the number of ESD pulses per test point 
to be applied, a confidence level that the discharge is 
applied at critical times in the product activity cycle, and 
a better ESD waveform as they have been found to occur 
in equipment installations.  This guide is under revision as 
of the writing.  In 1998, ANSI C63.17 was published to 
meet the EMC test and operational etiquette requirements 
in the FCC Part 15, Code of Federal Regulation for the 
new unlicensed personal communications services in the 
frequency range just below 2 GHz.  This service lan-
guished until recently when the frequency allocations 
were amended to allow better use of the spectrum.   

The period 1997 through 2001 brought forward several 

specialty standards for ASC C63.  C63.18 was the first 
standard devoted to in-situ immunity measurements of 
medical equipment using typical transceivers (portable 
transmitters) found in hospital environments such as mo-
bile phones, pagers, walkie-talkies, etc.  This recom-
mended practice has been successfully applied in 
determining separation distances for such transceivers to 
be away from medical devices such that there is no criti-
cal performance degradation of these devices.  Next, 
C63.14 was published in 1998 as a replacement for MIL-
STD-463 and hence contained both military as well as 
non-military EMC definitions.  Since it was also used by 
the military, there were definitions added to cover elec-
tromagnetic pulse (EMP) for example.  The dictionary is 
being updated as of this writing to cover the definitions in 
all of the C63 standards and hence limit repeating them in 
each standard as they can now be referenced in the source 
C63.14 standard dictionary.  ANSI C63.19 was published 
in 2001 and is now referenced by the FCC for determin-
ing the EMC between mobile (cellular) phones (wireless 
communications devices) and hearing aids.  This work 
represented collaboration among mobile phone manufac-
turers, hearing aid manufacturers, users of hearing aids, 
and the EMC standards community represented by ASC 
C63.   

Table 2:  ANSI ASC C63 Standards 

ASA C63.1-1946 

Standard [28] 

American War Standard for Radio 
Noise measuring instrumentation in 
the range 150 kHz to 20 MHz 

C63.2-1996 
Standard 

Electromagnetic Noise and Field 
Strength, 10 kHz to 40 GHz Specifi-
cations 

 ASA C63.3-1952 
 Spec. Standard 

Measuring instrumentation in the 
range 20 to 1000 MHz.

C63.4-2003 
Standard 

Methods of Measurement of Radio-
Noise Emissions from Low-Voltage 
Electrical and Electronic Equipment 
in the Range of 9 kHz to 40 GHz 

C63.5-1998 
Standard 

Calibration of Antennas Used for 
Radiated Emission Measurements in 
Electro Magnetic Interference 

C63.6-1996 

Computation of Errors in Open-Area 

93

background image

Guide 

Test Site Measurements  

C63.7-1992 
Standard 

Construction of Open-Area Test 
Sites for Performing Radiated Emis-
sion Measurements 

C63.12-1999 
Rec. Practice 

Electromagnetic Compatibility Lim-
its

C63.13-1991 
Guide  

Application and Evaluation of EMI 
Power Line Filters for Commercial 
Use

C63.14-1998 
Dictionary 

Technologies of Electromagnetic 
Compatibility (EMC), Electromag-
netic Pulse (EMP), and Electrostatic 
Discharge (ESD) (Dictionary of 
EMC/EMP/ESD Terms and Defini-
tions)  

C63.16-1993 
Guide 

Electrostatic Discharge Test Meth-
odologies and Criteria for Electronic 
Equipment  

C63.17-1998 
Standard 

Methods of Measurement of the 
Electromagnetic and Operational 
Compatibility of Unlicensed Per-
sonal Communications Services

 

(UPCS) Devices 

C63.18-1997 
Recommended 
Practice

On-site Ad Hoc Test Method for 
Estimating Radiated Electromagnetic 
Immunity of Medical Devices to 
Specific Radio-Frequency Transmit-
ters

C63.19-2001 
Standard 

Methods of Measurement of Com-
patibility between Wireless Commu-
nication Devices and Hearing Aids 

IV. C

ONCLUSION

This paper has provided an overview of the EMC regula-
tory and standards activity in Europe.  It has also high-
lighted some major activity in the United States.  The 
details are contained in the references which compliment 
this paper and give authoritative background information. 

A

CKNOWLEDGEMENT

The authors would like to thank those colleagues who 
have provided invaluable inputs for the paper.  Their 
contributions are highlighted in papers they have written 
as noted in the references section.  For more detailed 
information about their contributions, the authors suggest 
that the reader investigate the many references cited in 
this paper.  

R

EFERENCES

[1]  Reichsgesetzblatt No. 21 „Gesetz über das Telegraphenwesen des 

Deutschen Reiches“ from 6 April 1892 

[2]  Meyer’s Lexikon (Dictionary), ed. 1928: “Rundfunk” (broadcast-

ing) 

[3]  Seelemann, F.: “Funk-Entstörung” (radio interference suppression), 

Otto-Elsner-Verlag 1954, available from Technische Informations-
bibliothek (TIB) Hannover, Germany. 

[4]  Mueller, K.-O.: “Procedures for Granting Licenses for the Opera-

tion of RF Devices, Radio and TV Receivers in Western Ger-
many”, 1987 by Rohde & Schwarz 

[5]  Private communication of the author with Dr. Jasper Goedbloed 
[6]  Private communication of the author with Prof. Ryszard Struzak, 

now Switzerland, and Mr. Wladyslaw Moron, Poland 

[7]  Private communication of the author with Dr. Knopf, head until 

1992 of the GDR Radio Interference Department in Kolberg of the 
Central Institute for Posts and Telecommunications (RFZ) and Mr. 
Lutz Dunker, RegTP. 

[8]  Private communication of the author with Prof. Ermanno Nano, 

Italy 

[9]  Minutes of the first meeting of the CISPR 1934 
[10]Stumpers, F.L.H.M.: “International Co-operation in the Suppres-

sion of Radio Interference – The Work of C.I.S.P.R., Proc. I.RE.E. 
Australia, Febr. 1971 

[11]  Jackson, G.A.: “International EMC Cooperation Past, Present and 

Future”, IEEE AES Magazine, April 1987 

[12]  Jackson, G.A.: “The early history of radio interference”, Journal of 

the IERE Vol. 57 No. 6 pp.244 -250 (1987) 

[13]  CISPR/IEC77 Joint Meeting 1999 in San Diego (US-NC docu-

mentation): “The History of the IEC/CISPR and The IEC Techni-
cal Committee TC77”, provided by D. Moehr. 

[14]  ISO EMC standards on Automotive Immunity tests 
[15]  ETSI EMC standards 
[16]  European EMC Directive 89/336/EEC of 9 May 1989 
[17]  Draft New European EMC Directive 
[18]  Automotive EMC Directive 2004/104/EC 
[19]  CISPR Report No. 31 (Stresa 1967), with references of the Re-

ports from the Res. Inst. of Telecommunications (VUS) Prague 
No. 339/1961. 

[20]  Meyer de Stadelhofen, J.; Bersier, R.: „Die absorbierende Mess-

zange – eine neue Methode zur Messung von Störungen im Me-
terwellenbereich.“ Techn. Mitt. PTT (Schweiz) No. 3, 1969 (engl: 
“The absorbing clamp – a new method for the measurement of 
disturbances in the range of meter waves”) 

[21]  Several Swiss Decrees among which the following are mentioned: 

Decree of the Department of Post and Railway for the protection 
of radio receive stations against radio interference generated by 
high and low energy installations of 29, Jan. 1935. Swiss Decree 
on EMC of 9 April 1997 (updated on 28 Dec. 2000) 

[22]  Further material provided by Mr. Heinrich Ryser, Switzerland 

Note:  References for all the standards cited in this paper are contained 

in Tables 1 and 2. 

[23] A. Wall, “Historical Perspective of the FCC Rules for Digital 

Devices and a Look to the Future”, 2004 IEEE Symposium on 
Electromagnetic Compatibility, August 2004. 

[24] Notice of Proposed Rule Making—in the Matter of Amendment of 

Part 15 to redefine and clarify the rules governing restricted ra-
diation and low power communication devices, 
FCC Docket No. 
20780, published in the US Federal Register on 16 October 1979 at 
44 FR 59530. 

[25] D. N. Heirman, “Commercial EMC Standards in the United 

States”, Supplement to 10

th

 International Zurich Symposium and 

Technical Exhibition on Electromagnetic Compatibility, 9-11 
March 1993. 

[26] R. M. Showers, “Influence of IEC Work on National EMC Stan-

dards”, Supplement to 10

th

 International Zurich Symposium and 

Technical Exhibition on Electromagnetic Compatibility, 9-11 
March 1993. 

[27] D. N. Heirman, “EMC Standards Activity”, Spring 2003 issue of 

the IEEE EMC Society Newsletter. 

[28] Proposed American Standard Specifications for Radio Noise 

Meter, 0.015 to 25 Megacycle/Second, March 1950, American 
Standards Association.

94


Document Outline