biłyk,Chemia wody, Procesy wzbogacania wód w składniki mineralne

Procesy wzbogacania wód w składniki mineralne: skład chemiczny i struktura minerałów, skład fizyczno-chemiczny gleby, procesy wietrzenia.

Minerał to substancja chemiczna powstała w przyrodzie, o określonym składzie i określonych właściwościach fizycznych i chemicznych. Z minerałów jest zbudowana skorupa ziemska, także Księżyc i meteoryty. Jako minerały syntetyczne określa się uzyskiwane w toku procesów technologicznych substancje krystaliczne, których skład i struktura odpowiadają minerałom właściwym (naturalnym): diamenty syntetyczne, korund syntetyczny  i inne. Minerały odróżnia od substancji mineralnych (np. mineraloidów) struktura krystaliczna, a od mieszanin mineralnych (np. skał, złożonych zwykle z różnych minerałów) — jednorodność chemiczna i fizyczna.

Cechami charakterystycznymi minerałów są głównie: przynależność do określonej klasy krystalograficznej (kryształ), skład chemiczny, właściwości mechaniczne — twardość (określana w skali Mohsa), łupliwość, przełam (np. muszlowy, haczykowaty), właściwości optyczne: barwa, rysa (tj. barwa minerałów w stanie sproszkowanym), połysk (np. tłusty, metaliczny), współczynniki załamania światła (dwójłomność), pleochroizm a, także inne cechy fizyczne (np. właściwości magnetyczne, gęstość). Ze względu na właściwości barwne rozróżnia się minerały idiochromatyczne (barwne), odznaczające się charakterystyczną, własną barwą uwarunkowaną składem chemicznym i strukturą krystaliczną (np. czerwony cynober, niebieski azuryt), oraz minerały allochromatyczne (zabarwione), w stanie czystym bezbarwne, często zabarwione przez domieszki (np. odmiany kwarcu: ametyst, cytryn), lecz zachowujące białą rysę. Ze względu na częste wzajemne podstawienia jonów różnych pierwiastków chemicznych w strukturze krystalicznej minerałów (diadochia), część z nich (np. plagioklazy, oliwiny) tworzy szeregi izomorficzne, tj. roztwory stałe o zmiennej zawartości głównych składników, lecz o tej samej postaci krystalograficznej oraz o określonych właściwościach optycznych i fizycznych. Niektóre substancje chemiczne występują jako minerały o różnych postaciach krystalograficznych (polimorfizm), tworząc odmiany polimorficzne: np. węglan wapnia ma 2 odmiany polimorficzne — trygonalną (kalcyt) i rombową (aragonit). Forma kryształu minerału może być zachowana mimo jego zastąpienia przez inny minerał (pseudomorfoza) lub przez inną odmianę polimorficzną tej samej substancji (paramorfoza).

Minerały występują w postaci prawidłowo uformowanych dużych kryształów i ich skupień (np. szczotek krystalicznych), częściej tworzą nagromadzenia drobnych kryształów zwanych agregatami krystalicznymi, ziarna o kształtach nieregularnych (np. uzależnionych od kształtu pustki skalnej, w której krystalizowały), skupienia drobnokrystaliczne lub skrytokrystaliczne (ziemiste, zbite i inne) o różnych kształtach (np. nacieki, buły). Powstają w wyniku wielu procesów geologicznych: krystalizacji magmy, metamorfizmu, procesów hydrotermalnych, ekshalacji wulkanu, wietrzenia, diagenezy, wytrącania się substancji chemicznych z wód powierzchniowych, działalności organizmów, w określonych warunkach fizykochemicznych tworzą się zwykle charakterystyczne zespoły mineralne zwane paragenezami.

Zespołami minerałów występującymi w skorupie ziemskiej w dużych masach są skały. Wśród minerałów tworzących skałę rozróżnia się minerały główne (składniki gł.), tj. będące podstawowymi składnikami skały i decydujące o jej przynależności systematycznej, minerały poboczne (występujące pospolicie, lecz w niewielkich ilościach, i nie mające wpływu na przynależność systematyczną skały) i minerały akcesoryczne (które występują w zmiennej ilości w danym typie skały, a ich obfitość może być podstawą wydzielenia pewnych jej odmian). Minerały będące głównymi składnikami skał są nazywane minerałami skałotwórczymi: należą do nich głównie krzemiany i glinokrzemiany (skalenie, amfibole, pirokseny, łyszczyki, oliwiny, skaleniowce), kwarc, kalcyt, dolomit. Ważną grupą minerałów skałotwórczych są minerały ilaste, tj. minerały z grupy glinokrzemianów uwodnionych o strukturze warstwowej, tworzące skupienia złożone z drobnych, nierozpoznawalnych gołym okiem łusek; łatwo chłoną wodę, co powoduje ich pęcznienie i uplastycznienie, są głównymi składnikami skał ilastych i gleb (np. kaolinit, montmorillonity). Głównymi składnikami większości rud są minerały kruszcowe (kruszce), tj. minerały będące związkami (siarczkami, arsenkami, siarkosolami, tlenkami i in.) metali ciężkich (także antymonu, arsenu). Dla minerałów kruszcowych typowe są: duże współczynniki załamania światła, nieprzezroczystość, połysk metaliczny lub półmetaliczny (np. galena, chalkopiryt, hematyt). Wyróżnia się także minerały ciężkie (np. magnetyt, kasyteryt, ilmenit, turmalin), dające się dzięki znacznej gęstości (powyżej 3 g/cm3) łatwo oddzielać (szlichowa próba) od pospolitych minerałów skałotwórczych. Znaczna część minerałów jest wykorzystywana w gospodarce (kopaliny), głównie w przemyśle, także w rzemiośle artystycznym (kamienie szlachetne), ich nagromadzenia (złoże) są od starożytności eksploatowane metodami górniczymi.

Minerały to substancje chemiczne powstające w przyrodzie, o określonym składzie i określonych właściwościach fizycznych i chemicznych oraz o strukturze krystalicznej. Z minerałów zbudowana jest skorupa ziemska, księżyc i meteoryty. Minerały mogą mieć postać prawidłowych kryształów, częściej rozmaitych skupień krystalicznych. Ze względu na genezę wyróżnia się minerały pierwotne i wtórne. Minerały pierwotne wydzielają się bezpośrednio z danego środowiska: mogą krystalizować z magmy (minerały magmowe), z przegrzanych par i gorących roztworów wydzielających się z magmy (minerały pneumatolityczne i hydrotermalne), z par i gazów wulkanicznych (minerały wulkaniczno-ekshalacycne), z wód źródlanych, jeziornych lub morskich (minerały osadowe). Minerały wtórne powstają z minerałów pierwotnych wskutek fizycznych i chemicznych przeobrażeń minerałów pierwotnych w wyniku procesów > wietrzenia > diagenezy > i metamoefizmu. Minerały zwykle występują w przyrodzie w naturalnych zespołach powstających w określonych środowiskach fizykochemicznych. Zespoły minerałów występujące w skorupie ziemskiej w wielkich masach noszą nazwę skał.

Glebą nazywamy warstwę powierzchniową, pokrywającą skorupę ziemską. Powstała ona w wyniku długotrwałych procesów, które przebiegały na powierzchni Ziemi. O długości tego procesu świadczy fakt, iż warstwa ziemi o grubości  2-3cm kształtuje się od 200 do 1000 lat. Proces ten polega na oddziaływaniu czynników klimatycznych, które powodują wietrzenie skał, jak i na oddziaływaniu organizmów. Rozdrobniona skała zatrzymuje cząstki wody i powietrze. Z czasem pojawiają się rośliny utrwalające glebę.  Bardzo ważną funkcję pełnią drobnoustroje, których zadaniem jest rozkładanie szczątków roślinnych i zwierzęcych, wzbogacając w ten sposób glebę w próchnicę i minerały. Gleba ma następujący skład:

-          materia organiczna (5%);

-          minerały (45%);

-          woda (25%);

-          powietrze (25%).

Utrzymanie wysokiej jakości gleby zapewniają organizmy glebowe. W związku z tym można potraktować glebę jako żywą warstwę skorupy ziemskiej. Jak wiadomo wszystko co żywe podlega ciągłym zmianom, będących wynikiem oddziaływania czynników naturalnych, a także wpływem działalności samego człowieka.

Składniki chemiczne

Wyróżniamy następujące pierwiastki: węgiel C, glin Al., wapń Ca, żelazo Fe, chlor Cl, wodór H, potas K, magnez Mg, azot N, sód Na, tlen O, fosfor P, siarka S, krzem Si + mangan Mn, molibden Mo, miedź Cu, kobalt Co, ołów Pb, cynk Zn, bor B, tytan Ti.

Część mineralna to przede wszystkim: krzem Si, glin Al, żelazo Fe, wapń Ca. Krzem Si występuje w 60 do 90 % pod postacią krzemionki. Glin Al występuje w granicach 5 do 12%. Żelazo Fe występuje w postaci Fe2+ oraz Fe3+. Natomiast wapń Ca w postaci węglanu wapnia CaCO3. Zawartość CaCO3 waha się pomiędzy ilościami śladowymi, a kilkudziesięcioma procentami. Pozostałe pierwiastki mierzymy w ppm; mogą sięgać najwyżej 1% zawartości.

Typy i procentowy udział najczęstszych gleb naszego kraju

Gleby bielicowe, płowe i brunatne są najczęstsze. Stanowią łącznie 82% wszystkich naszych gleb. Pozostałe gleby to:

- gleby błotne (9%);

- gleby mady (5%);

- czarne ziemie (2%) i czarnoziemy (1%);

- gleby rędzinowe (1%).

Struktura warstwy glebowej

W glebie tworzą się tzw. agregaty. Są one bardzo ważne, ponieważ zapewniają roślinom właściwą gospodarkę wodną i warunki cieplne. W gruzełkach występują przestrzenie kapilarne, w których gromadzi się woda kapilarna. W większych przestrzeniach gromadzi się woda grawitacyjna. Gdy spłynie, do wolnych miejsc dostaje się powietrze atmosferyczne, dostarczając w ten sposób tlen O­­2­­­­­. Natomiast woda czerpana jest z kapilar. 

Fizyczne właściwości

Priorytetem przy ustalaniu właściwości fizycznych jest układ trójfazowy tej gleby. Na fazę stałą przypadają cząstki mineralno-organiczne, mineralne i organiczne. Fazę ciekłą stanowi roztwór glebowy, natomiast gazową powietrze. Powietrze na przemian z roztworem glebowym wypełnia pory. Zasadniczymi właściwościami fizycznymi są:

- skład granulo-metryczny.

Podstawowymi składnikami gleby są cząstki mineralne, które powstają w wyniku erozji wietrznej działającej na skałę macierzystą. Do mineralnych składników zaliczamy minerały: ilaste (np. illit), krzemianowe (np. kwarc i skalenie) i bezkrzemowe (kalcyt i gips). Większość cząsteczek jest różna, więc cząsteczki glebowe podobne pod względem składu oraz właściwości fizycznych zakwalifikowano do grup frakcyjnych. W naszym kraju materiał glebowy dzieli się na dwie grupy:

1.      Części szkieletowe, które stanowi frakcja kamieni o średnicy powyżej 20nm i frakcja żwiru o średnicy 20-1nm.

2.      Części ziemiste, do których zaliczamy frakcję piasku (średnica 1-0,1nm), frakcję pyłu (średnica 0,1-0,02) i frakcję zwaną częściami spławianymi o średnicy poniżej 0,02nm.

Do części spławianych zaliczamy ił pyłowy koloidalny, drobny i gruby. Składem granulometrycznym nazywamy udział danej frakcji w definicyjnej jednostce masy gleby. Uznaje się to za zasadniczą cechę gleby, mającą związek z materiałem macierzystym i jego jakością.

- gęstość gleby.

Gęstością gleby nazywamy masę jednego metra sześciennego suchej gleby, nienaruszonej strukturalnie. Jest zależna od uziarnienia oraz struktury gleby. Wyróżniamy dwa rodzaje gęstości:

- gęstość właściwą-rzeczywistą.

Mówi o tym o ile cząstka gleby nie zawierająca powietrza ani wody ma większą masę od cząsteczek wody, które zajmują tę samą objętość. Zależy od tzw. składu mineralnego.

- gęstość objętościowa.

Przez tą gęstość rozumiemy stosunek masy danej próbki gleby, która jest naturalna w swoim układzie do objętości całkowitej tej próbki. Ze wzrostem tej gęstości wzrasta stopień porowatości tej gleby i jest ona bardzie zbita.

- porowatość.

Suma wolnych przestrzeni gleby. Wyróżniamy porowatość kapilarną oraz niekapilarną.

- zwięzłość.

Jest to siła, będąca miarą spojenia cząsteczek. Mierzy się ją poprzez określenie siły potrzebnej do ich rozdzielenia.

- plastyczność.

Jest cechą umożliwiającą przybieranie glebie różnych kształtów, gdy jest wilgotna. Jest zależna od wielkości cząsteczek.

- lepkość.

Jest wyrażana zdolnością przylegania gleby. Zależy od składu mechanicznego oraz wilgotności gleby.

- pęcznienie, kurczenie.

Zachodzi w glebach zawierających dużo cząstek koloidalnych. Zwiększenie objętości przez gęstość, przy nawilgotnieniu to właśnie pęcznienie, a kurczenie przebiega w drugim kierunku.

- wodne właściwości.

Woda może przyjmować różne postacie:

- wolną, kiedy przepływa z góry w dół gleby, determinowana własną masą;

- kapilarną, wnikającą do najcieńszych kanalików glebowych. Jest rezerwuarem wilgoci w glebie i porusza się w każdym kierunku;

- błonkową, trudnodostępną dla roślin. Powleka gruzełki oraz cząsteczki;

- higroskopową, silnie związaną i dostającą się do gleby z atmosfery. Jest obecna w ciężkich oraz próchniczych typach gleb; 

- molekularną, która zatrzymuje się na cząsteczkach gleby, w wyniku działania sił adhezji. Jest zależna od typu występujących w glebie koloidów;

- pary wodnej, znajdującej się w porach i będącej częścią składową powietrza glebowego.

- cieplne właściwości.

Mają związek z przewodnictwem i pojemnością cieplną. Intensywność nagrzewania oraz szybkość utraty ciepła gleby mają związek z barwą oraz wilgotnością tej gleby. Ciepło może dostarczać słońce, procesy biologiczne i powietrze.

Właściwości chemiczne oraz fizyko-chemiczne

Skład chemiczny, formy, związki i przemiany pierwiastków określamy mianem właściwości chemicznych gleby. Badania są prowadzone aby oznaczyć:

- zawartość materii organicznej gleby. Jeśli gleba jest prawidłowo użytkowana powinna występować równowaga pomiędzy substancjami organicznymi i  tworzącymi się związkami próchnicowymi. W przypadku przyspieszonej mineralizacji możemy wnioskować, iż doszło do zakwaszenia lub akumulacji toksycznych związków. Aby zbadać ilość substancji organicznej w glebie stosuje się metodę barwową.

- zawartość próchnicy, a także węgla organicznego utlenialnego. Węgiel i próchnica pozwalają oszacować zawartość substancji organicznej w glebie, a także stopień jej humifikacji. Zawartość węgla w glebie świadczy o zawartości próchnicy. Należy zastosować przelicznik 58%. Sposób oznaczenia opiera się na utlenianiu węgla C do dwutlenku węgla CO2. oznaczenie przebiega w środowisku kwaśnym.

- zawartość azotu. Jest zależna od jakości oraz ilości substancji organicznej, a także od stopnia rozkładu (C\N). zawartość azotu w glebie to zawartość azotu organicznego + zawartość związków mineralnych azotu. Oznacza się również ilość ołowiu, kobaltu, kadmu, niklu, magnezu i manganu.

Odczyn pH, sorpcyjność i właściwości ohydo-redukcyjne określają właściwości fizyko-chemiczne.   

Odczyn gleby – jest zależny od stężenia jonów wodorowych H+ i zasadowych OH-. ph ma związek z aktywnością biologiczną. Jeśli stosunek jonów kwasowych do zasadowych jest równy 1 to pH jest neutralne. W środowisku kwaśnym występuje przewaga jonów H+, a w środowisku zasadowym jonów OH-. do oznaczenia odczynu gleby używa się dwóch metod. Pierwsza to pomiar potencjometryczny (polega na mierzeniu różnicy potencjałów pomiędzy półogniwami. Drugą metodą jest pomiar kolorymetryczny (mierzy się barwę cieczy, która powstaje w wyniku reakcji: płyn Helliga + gleba).  

Zdolność sorpcyjna – to zdolność absorbenta do absorpcji par, gazów, cząsteczek niezdysocjonowanych oraz jonów pochodzących z roztworu glebowego. Polega to na pochłanianiu wymienionych substancji, które zachodzi na powierzchni tego absorbenta. W przypadku gleby sorpcja zależy od koloidalnej fazy stałej (są to cząsteczki 2*10-3mm). Wyróżniamy: koloidy glebowe, Fe(OH)2, Fe(OH)3, Al.(OH)3, minerały ilaste, kompleksy ilasto-próchnicze i próchnicę. Wyróżniamy trzy typy sorpcji: biologiczną, chemiczną i wymienną. W glebie funkcjonuje ta ostatnia. Jej istotą jest wymiana wcześniej zaabsorbowanych jonów na te znajdujące się w roztworze glebowym. Maksymalną ilość kationu H+, którą jest w stanie zaabsorbować materiału glebowego nazywa się pojemnością sorpcyjną gleby. W czasie zachodzących reakcji redoks dochodzi do przyłączania lub oddawania elektronów. W czasie przemian materii organicznej w glebie dominują procesy utleniania (są nieodwracalne).

Zjawisko erozji

Jest to najczęstsza przyczyna degradacji gleby. Erozja polega na mechanicznym oddziaływaniu na powierzchnię Ziemi w sposób niszczący czynnikami zewnętrznych oraz na przenoszeniu owych produktów niszczenia. Rozróżniamy dwa typy erozji wodną i wietrzną. Przykładem erozji wodnej jest spłukiwanie elementów gleby przez opad atmosferyczny, np. w postaci deszczu.  Nasilenie tego rodzaju erozji zależy od stopnia w jakim występuje roślinność. Najlepiej osłonięte są gleby porośnięte trawami, leżące w lasach. Niestety człowiek wycina lasy i niszczy roślinność. Odsłania w ten sposób glebę zwiększając jej podatność na erozję. Najbardziej odczuwalne jest to na górzystych obszarach, gdzie spływowi powierzchniowemu (powodującemu erozję) sprzyja nachylenie terenu. Również erozję rzeczną zaliczamy do erozji wodnej.  Rzeka w czasie przepływu zabiera ze sobą rozdrobnione podłoże, elementy spłukiwanej gleby z terenów przybrzeżnych do rzek. Natomiast brzegi morskie ulegają erozji wywołanej przez wodę morską uderzającą z dużym impetem o brzeg.

Wiatr również jest czynnikiem erozjo-twórczym. Erozja tego rodzaju polega na przenoszeniu drobin piasku oraz próchnicy glebowej pod wpływem wiatru. W wyniku nasilenia erozji wietrznej dochodzi do burz pyłowych. Polska jest obszarem, gdzie zjawiska te uległy zdecydowanemu nasileniu. Dotyczy to głównie obszarów wylesionych, gdzie występują wyraźne deficyty wody. 

Procesy towarzyszące tworzeniu się gleby

Wpływ środowiska naturalnego, w naturalnych warunkach jest czynnikiem warunkującym tworzenie się gleby ze skał. Skały lub minerały pochodzące ze skorupy naszej Ziemi, jeśli dotrą na powierzchnię, mogą być skałą macierzystą przyszłych gleb. Powstawanie gleb z takiego surowego materiału ma związek z wietrzeniem oraz procesami biochemicznymi. Wyróżnia się trzy typy wietrzenia: chemiczne, biologiczne oraz fizyczne. Przebiegają równocześnie, ale z innym nasileniem. Pod wpływem wietrzenia zmianie ulega wygląd składników mineralnych od zewnętrznej strony skały. Odporność na działanie wiatru jest różna u różnych skał. Skały typu grubokrystalicznego ulegają trudniej wietrzeniu. Utwory zbudowane z jednego rodzaju minerału są bardziej odporne, od tych wielo-mineralnych. Kolejność wietrzenia jest następująca: najpierw zachodzi wietrzenie fizyczne (dochodzi do rozdrobnienia), potem dochodzi do wietrzenia chemicznego i biologicznego.

Wietrzenie typu chemicznego

Na podstawie przemian skalenia potasowego prześledzić można powstawanie różnych produktów wietrzenia, w zależności od obecności potasu:

w wypadku, gdy cały potas został wymyty do roztworu, powstającym minerałem wtórnym j

est kaolinit:

4K[AlSi3O8] + 6H2O ® Al4[(OH)8Si4O10] + 8SiO2 + 4KOH
skaleń potasowy + woda ® kaolinit + krzemionka + potas

jeżeli pewna część potasu nie ulegnie wymyciu i pozostanie w obrębie sieci krystalicznej, powstającym minerałem wtórnym jest

illit.

5K[AlSi3O8] + 4H2O ® KAl4[(OH)4AlSi7O20] + 8SiO2 + 4KOH
skaleń potasowy + woda ® illit + krzemionka + potas

Wietrzenie- jego efektem jest zmiana struktury minerałów. Wytwarzane są nowe minerały zwane wtórnymi. Rozkład skał oraz minerałów poprzez wietrznie typu chemicznego oraz mineralnego jest bardzo skuteczne w klimacie wilgotnym. Czynnikami bardzo istotnymi dla wietrzenia chemicznego są woda, dwutlenek węgla, kwasy mineralne, organiczne i tlen. Podczas tego wietrzenia na zwałowiskach dochodzi do:

- utlenienia (ma zasięg na głębokość do której dochodzi tlen),

- redukcji (zachodzi tam, gdzie nie występuje wolny tlen; niekiedy redukcję wywołują kwasy),

- hydratacji (jeśli woda jest składnikiem minerałów, zmieniając ich właściwości chemiczne oraz fizyczne - 2Fe2O3+3H2O = 2Fe2O3*3H2O),

- hydrolizy ( hydrolizie z minerałów trudno ulega siarczan (VI) wapnia i węglan wapnia - jeszcze trudniej; w przypadku minerałów zasadowych istnieje możliwość do  wymiany z wodorem CaSiO3+HOH=H2SiO3+Ca(OH)2 ),

- karbonatyzacji (ma ona związek z powstawanie węglanów, a substratem są dwuwęglany. Karbonatyzacja jest związana z rozkładem minerałów glebowych. Ma związek z hydrolizą minerałów, które następnie przechodzą w inne).

W trakcie oddychania korzeni uwalnia się dużo dwutlenku węgla, tworzącego połączenia z kationami. Ze wzrostem koncentracji dwutlenku węgla wzrasta wietrzenie chemiczne.

Wietrzenie chemiczne daje minerały wtórne, mające znaczną aktywność i zalicza się je do minerałów ilastych, a z nich z kolei zbudowane są iły oraz gliny. W glinie oprócz minerałów wtórnych znajduje się również kwarc, substancje organiczne i uwodnione tlenki żelaza. Wyróżniamy następujące grupy glin:

- montmorylonitowa, czyli (OH)4Al4Si8O20*H2O – powstaje w warunkach kwaśniejszych od kaolinitowej. Stanowi główny składnik tzw. glin bentonitowych, dobrze sorbuje i występuje w piaskowym typie gleb o frakcji poniżej 0,002mm.

- kaolinitowa, czyli (OH)8Al4Si4O10 – zaliczamy do niej kaolinit. Tworzy się podczas wietrzenia skał typu glinokrzemianowego w warunkach kwaśnych. Spotyka się ją najczęściej na zwałach obydwóch rodzajów węgla.

- illitowa – zaliczamy do niej illit, który jest najbardziej powszechnym produktem procesu wietrzenia skał lądowych. Można ją spotkać na zwałach z odpadów węglowych.

Wietrzenie typu biologicznego – gleby i skały osadowe rzadko zawierają jedynie jeden rodzaj iłów. Celem rekultywacji jest zintensyfikowanie procesów glebotwórczych, w których znaczną rolę pełni wietrzenie biologiczne. Dochodzi do niego w wyniku oddziaływania organizmów na skały lub poprzez chemiczne przetworzenie minerałów, przy użyciu produktów rozkładu materii organicznej (kwasy huminowe i dwutlenek węgla). Ten typ wietrzenia odgrywa ważną rolę podczas powstawania gleby. Z tego wynika tak wielkie znaczenie materii organicznej podczas rekultywacji obszarów bezglebowych. Próchnica może powstawać jedynie w glebie. Stanowi ona aż 90% substancji organicznej znajdującej się w glebie. Substancja organiczna to 5% gleby. W czasie humifikacji (humus = próchnica) powstają związki organiczne, które sklasyfikowano do 4 grup:

- fulwokwasy;

- kwasy hymato-melanowe;

- huminy (są to sole stymulujące, bądź hamujące wzrost organizmów żywych);

- kwasy huminowe.


Wyszukiwarka

Podobne podstrony:
biłyk,Chemia wody, Eutrofizacja wód
Biłyk,chemia wody, Zanieczyszczenie wód
Biłyk,chemia wody, Kształtowanie się składu wód od opadowych do podziemnych
biłyk,Chemia wody, Eutrofizacja wód
biłyk,Chemia wody, opracowanie zagadnień
Biłyk,chemia wody, Właściwości chemiczne wody
Biłyk,chemia wody, Budowa cząsteczki wody
Biłyk,chemia wody, wykres?zowy wody
Biłyk,chemia wody, Właściwości fizyczne wody
biłyk,Chemia wody, Podstawowe wskaźniki składu jonowego wody
UBOCZNE PRODUKTY, Chemia wody - (A. Biłyk)
chemia wody 2, Chemia wody - (A. Biłyk)
chemia wody 3, Chemia wody - (A. Biłyk)
chemia wody, Chemia wody - (A. Biłyk)
ko-o, Chemia wody - (A. Biłyk)
Eutrofizacja wód, Politechnika Wrocławska, Inżynieria Środowiska, II rok, Chemia wody

więcej podobnych podstron