Rownania reakcji chemicznych i ich bilansowanie

background image

Strona 1

Zapis równań reakcji chemicznych oraz ich uzgadnianie

Równanie reakcji chemicznej jest symbolicznym zapisem reakcji przy użyciu symboli wzorów oraz odpowiednich
współczynników i znaków. Obrazuje ono przebieg przemiany zarówno pod kątem jakościowym jak i ilościowym,
co oznacza, że oprócz tego jakie substancje biorą udział w reakcji podaje nam w jakiej ilości.

Postaram się na przykładach pokazać w jaki sposób zapisywać a następnie uzgadniać i interpretować ilościowo i
jakościowo równania reakcji chemicznych o różnym stopniu trudności.

Dla każdego przykładu przedstawione zostaną:

- zapis równania reakcji przy wykorzystaniu wzorów chemicznych oraz modeli

- sposób uzgadniania równania reakcji, czyli uzupełniania w nich współczynników stechiometrycznych

- końcowy zapis równania za pomocą wzorów oraz modeli

- interpretacja jakościowa (atomowo – cząsteczkowa) równania reakcji

- interpretacja ilościowa (masowa) równania reakcji

Weźmy sobie taki bardzo prosty przykład:

Słowny zapis wygląda następująco:

żelazo + siarka → siarczek żelaza (II)

Typowy zapis równania reakcji wygląda następująco:

Fe

+

S

Fe

S

A taki jest zapis modelowy:

interpretacja atomowo – cząsteczkowa równania:

1 atom żelaza łączy się z 1 atomem siarki w wyniku czego powstaje 1 cząsteczka siarczku żelaza (II)

interpretacja masowa równania (w unitach):

56 u żelaza łączy się z 32 u siarki i powstaje 88 u siarczku żelaza

Trochę trudniej wygląda to w przypadku takim jak ten:

żelazo + siarka → siarczek żelaza (III)

modelowo przedstawia się to następująco:

czyli:

Fe

+

S

Fe

2

S

3

Widzimy zatem, ze czegoś nam tu brakuje. Po prawej stronie mamy 3 atomy siarki i 2 atomy żelaza a po lewej po
jednym. Musimy zatem wprowadzić odpowiednie współczynniki, aby ilośc atomów po obu stronach była taka
sama. Podwojenie liczby atomów żelaza i potrojenie siarki da nam taki efekt.

I gotowe równanie wygląda tak:

2

Fe

+ 3

S

Fe

2

S

3

background image

Strona 2

A zatem otrzymujemy następujący zapis modelowy:

interpretacja atomowo – cząsteczkowa równania:

2 atomy żelaza łączą się z 3 atomami siarki w wyniku czego powstaje 1 cząsteczka siarczku żelaza (III)

interpretacja masowa równania (w unitach):

112 u żelaza łączy się z 96 u siarki i powstaje 208 u siarczku żelaza

Zastanówmy się, gdy pojawiają się wśród substratów dwuatomowe cząsteczki pierwiastka, np. tlenu:

miedź + tlen → tlenek miedzi (I)

Modelowo oraz za pomocą wzoru przedstawia się to tak:

Cu

+

O

2

Cu

2

O

Ale widać, że powyższy zapis nie oddaje pełnego przebiegu reakcji. Jeśli przereagują oba atomy tlenu, budujące
cząsteczkę, powstać muszą 2 cząsteczki tlenku, a zatem przed tym produktem musimy wpisać współczynnik
stechiometryczny 2:

Cu

+

O

2

→ 2

Cu

2

O

To jeszcze nie wszystko, gdyż do zbudowania 2 cząsteczek produktu niezbędne są 4 atomy miedzi. Musimy zatem
przed miedzią wprowadzić współczynnik 4:

4

Cu

+

O

2

→ 2

Cu

2

O

Poprawny zapis modelowy potwierdza konieczność wprowadzenia współczynników do równania:

interpretacja atomowo – cząsteczkowa równania:

4 atomy miedzi łączą się z dwuatomowa cząsteczką tlenu w wyniku czego powstają 2 cząsteczki tlenku miedzi (I)

interpretacja masowa równania (w unitach):

254 u miedzi łączą się z 32 u tlenu i powstaje 286 u tlenku miedzi (I)

background image

Strona 3

Kolejny przykład będzie dość podobny do poprzedniego:

glin + tlen → tlenek glinu

Al

+

O

2

Al

2

O

3

Widzimy zatem, że w cząsteczce produktu mamy 2 atomy glinu i 3 atomy tlenu a po stronie substratów 1 atom
glinu i dwuatomowa cząsteczkę tlenu. śeby uzgodnić równanie należy znaleźć wspólną wielokrotność ilości
atomów tlenu po lewej i po prawej stronie. Dla 2 i 3 wielokrotnością tą jest 6, a zatem wprowadzamy takie
współczynniki, które dadzą nam 6 atomów glinu po prawej i po lewej stronie równania:

Al

+ 3

O

2

→ 2

Al

2

O

3

Na koniec wprowadzamy współczynnik 4 przed Al, aby po obu stronach były po 4 atomy tego pierwiastka:

4

Al

+ 3

O

2

→ 2

Al

2

O

3

interpretacja atomowo – cząsteczkowa równania:

4 atomy glinu łączą się z 3 cząsteczkami tlenu w wyniku czego powstają 2 cząsteczki tlenku glinu

interpretacja masowa równania (w unitach):

108 u glinu łączy się z 96 u tlenu i powstają 204 u tlenku glinu

Kolejne przykłady pokażą w jaki sposób poradzić sobie można z równaniem, gdy oba substraty są w postaci
cząsteczek:

tlenek siarki (IV) + tlen → tlenek siarki (VI)

S

O

2

+

O

2

S

O

3

Zastanówmy się ile atomów tlenu należy dodać do SO

2

, aby otrzymać SO

3

. Wychodzi, że do przekształcenia 1

cząsteczki potrzebny jest 1 atom tlenu, a my dysponujemy dwuatomową cząsteczką. Możemy zatem wziąć 2
cząsteczki tlenku SO

2

i wtedy wykorzystamy oba atomy tlenu i uzyskamy 2 cząsteczki SO

3

.

2

S

O

2

+

O

2

→ 2

S

O

3

background image

Strona 4

interpretacja atomowo – cząsteczkowa równania:

2 cząsteczki tlenku siarki (IV) łączą się z 1 cząsteczką tlenu i powstają 2 cząsteczki tlenku siarki (VI)

interpretacja masowa równania (w unitach):

128 u tlenku siarki (IV) łączy się z 32 u tlenu i powstaje 160 u tlenku siarki (VI)

I jeszcze przykład reakcji rozkładu, czyli analizy tlenku jodu (V):

tlenek jodu (V) → jod + tlen

I

2

O

5

I

2

+

O

2

W tym przykładzie początkowo ilość atomów jodu się zgadza, natomiast po stronie substratów jest 5 atomów
tlenu, a po stronie produktów - 2. Aby uzgodnić równanie należy najpierw znaleźć wspólną wielokrotność dla 2 i 5,
czyli 10. W tym celu ilość cząsteczek tlenku mnożymy przez 2 a cząsteczek tlenu przez 5.

2

I

2

O

5

I

2

+ 5

O

2

Aby wszystko się zgadzało, podwajamy ilość cząsteczek jodu.

2

I

2

O

5

→ 2

I

2

+ 5

O

2

interpretacja atomowo – cząsteczkowa równania:

2 cząsteczki tlenku jodu (V) ulegają rozkładowi na 2 cząsteczki jodu i 5 cząsteczek tlenu

interpretacja masowa równania (w unitach):

668 u tlenku jodu (V) ulega rozkładowi na 508 u jodu i 160 tlenu


W następnej kolejności przeanalizujmy kilka przykładów reakcji wymiany. Oto pierwszy z nich:

Przykład 1:

metan + tlen → dwutlenek węgla (tlenek węgla (IV) ) + woda (tlenek wodoru)

background image

Strona 5

Początkowe równanie wygląda następująco:

C

H

4

+

O

2

→ C

O

2

+

H

2

O

Ponieważ atomy tlenu wchodzą w skład 3 różnych reagentów, bilansowanie reakcji rozpoczynamy od atomów
wodoru i podwajamy ich liczbę w produktach

C

H

4

+

O

2

→ C

O

2

+ 2

H

2

O

Teraz liczymy atomy tlenu i zauważamy, ze należy podwoić ich liczbę po stronie substratów, biorąc 2 cząsteczki.

C

H

4

+ 2

O

2

→ C

O

2

+ 2

H

2

O

interpretacja atomowo – cząsteczkowa równania:

1 cząsteczka metanu reaguje z 2 cząsteczkami tlenu w wyniku czego powstaje 1 cząsteczka dwutlenku węgla
i 2 cząsteczki wody

interpretacja masowa równania (w unitach):

16 u metanu reaguje z 64 u tlenu w wyniku czego powstają 44 u dwutlenku węgla i 36 u wody

Przykład 2:

tlenek miedzi (I) + węgiel → miedź + dwutlenek węgla

Cu

2

O

+ C

Cu

+ C

O

2

Ponieważ atomy tlenu najwyższe indeksy stechiometryczne są przy atomach miedzi i tlenu musimy podjąć decyzje
od którego z nich zaczynamy uzgadnianie równania. Z pomocą przychodzi nam fakt, że tlen po obu stronach
równania jest w postaci związanej i dlatego zaczynamy od niego. Podwajamy zatem ilość atomów tlenu w
substratach:

2

Cu

2

O

+ C

Cu

+ C

O

2

Aby poprawnie uzupełnić współczynniki musimy jeszcze w produktach uwzględnić 4 atomy miedzi.

2

Cu

2

O

+ C

→ 4

Cu

+ C

O

2

background image

Strona 6

interpretacja atomowo – cząsteczkowa równania:

2 cząsteczki tlenku miedzi (I) reagują z 1 atomem węgla w wyniku czego powstają 4 atomy metalicznej miedzi
i 1 cząsteczka dwutlenku węgla

interpretacja masowa równania (w unitach):

286 u tlenku miedzi (I) reaguje z 12 u węgla w wyniku czego powstają 254 u miedzi i 44 u dwutlenku węgla

Przykład 3:

amoniak + tlen → tlenek azotu (II) + woda

N

H

3

+

O

2

N

O

+

H

2

O

Uzgadnianie rozpoczynamy od wodoru, gdyż tlen występuje w 3 miejscach równania. Ustalamy wspólną
wielokrotność wodorów jako 6 , a zatem musimy wziąć 2 cząsteczki amoniaku (w substratach) i 3 cząsteczki wody
(w produktach)

2

N

H

3

+

O

2

N

O

+ 3

H

2

O

Otrzymujemy zatem po prawej stronie 2 cząsteczki tlenku azotu (II):

2

N

H

3

+

O

2

→ 2

N

O

+ 3

H

2

O

Po obliczeniu ilości atomów tlenu w produktach otrzymujemy 5 atomów, a zatem w substratach należałoby wpisać
2,5 cząsteczki tlenu:

2

N

H

3

+ 2,5

O

2

→ 2

N

O

+ 3

H

2

O

Aby pozbyć się ułamka podwajamy wszystkie współczynniki stechiometryczne, analogicznie jak w równaniu
matematycznym:

4

N

H

3

+ 5

O

2

→ 4

N

O

+ 6

H

2

O

interpretacja atomowo – cząsteczkowa równania:

4 cząsteczki amoniaku reagują z 5 cząsteczkami tlenu w wyniku czego powstają 4 cząsteczki tlenku azotu (II)
i 6 cząsteczek wody

interpretacja masowa równania (w unitach):

68 u amoniaku reaguje z 160 u tlenu w wyniku czego powstaje 120 u tlenku azotu (II) i 108 u wody

Przygotował: mgr inż. Bartosz Stasicki


Wyszukiwarka

Podobne podstrony:
Jak uzgadniać równania reakcji chemicznych
mater. - PUZLE CHEMICZNEdla integracji, PUZLE CHEMICZNE - równania reakcji chemicznych
kartk równania reakcji chemicznych
Jak uzgadniać równania reakcji chemicznych
Aminokwasy i ich reakcje chemiczne NOTATKI Z WYKŁADÓW, Biochemia, Biochemia, aminokwasy
biochemia słowniczek, ENZYMY- to białka, ich funkcja to katalizatory, powodujące złożone reakcje che
biochem, BIOCHEMIA- pojęcia, ENZYMY- to białka, ich funkcja to katalizatory, powodujące złożone reak
01 Reakcje chemiczne i równania chemiczne
Równania reakcji, Inżynieria chemiczna i procesowa
KATALIZA HOMOGENICZNA - REFERAT, KATALIZATORY- to substancje, które modyfikują kinetykę reakcji chem
Równania reakcji Otrzymywania Soli oraz ich nazwy
04 2 Bilansowanie równań reakcji redoks metodą elektronowo jonową
w5 wzor reakcja chemiczna ilościowo
Ćw.1 Wybrane reakcje chemiczne przebiegające w roztworach wodnych ćwiczenie 1, Chemia ogólna i żywno
04 Kinetyka reakcji chemicznych i kataliza
BADANIE WP YWU ST ENIA NA SZYBKO REAKCJI CHEMICZNYCH

więcej podobnych podstron