background image

Abstract Fungi comprise a minor component of the oral 
microbiota but give rise to oral disease in a signifi cant pro-
portion of the population. The most common form of oral 
fungal disease is oral candidiasis, which has a number of 
presentations. The mainstay for the treatment of oral can-
didiasis is the use of polyenes, such as nystatin and ampho-
tericin B, and azoles including miconazole, fl uconazole, and 
itraconazole. Resistance of fungi to polyenes is rare, but 
some  Candida species, such as Candida glabrata and C. 
krusei
, are innately less susceptible to azoles, and C. albi-
cans
 can acquire azole resistance. The main mechanism of 
high-level fungal azole resistance, measured in vitro, is 
energy-dependent drug effl ux. Most fungi in the oral cavity, 
however, are present in multispecies biofi lms that typically 
demonstrate an antifungal resistance phenotype. This resis-
tance is the result of multiple factors including the expres-
sion of effl ux pumps in the fungal cell membrane, biofi lm 
matrix permeability, and a stress response in the fungal cell. 
Removal of dental biofi lms, or treatments to prevent biofi lm 
development in combination with antifungal drugs, may 
enable better treatment and prevention of oral fungal 
disease.

Key words  Oral candidiasis · Antifungal drug resistance · 
Biofi lms

Introduction

Oral fungal infections affect a signifi cant,  and  increasing, 
proportion of the population.

1

 Fungi are a minor compo-

nent of the oral microbial fl ora but certain species, mostly 
belonging to the Candida genus, are routinely present at 
low concentrations without causing infection.

2,3

 These com-

mensal fungi are opportunistic pathogens and can cause 

disease when their host becomes immunocompromised. 
These infections can be superfi cial and affect the mucous 
membranes, or can penetrate the epithelium and be 
hematogenously disseminated with serious consequences. 
Mucosal infections are seen in neonates and in the elderly, 
two groups with suboptimal immune function. They also 
affl ict people whose immune systems have been suppressed. 
Oropharyngeal candidiasis (OPC) is common in acquired 
immunodefi ciency syndrome (AIDS) patients who do 
not have access to highly active antiretroviral therapy 
(HAART),

4

 whereas oral candidiasis often affects cancer 

patients undergoing chemotherapy and/or radiotherapy.

5

 

When fungi penetrate the epithelial surfaces of immuno-
compromised hosts, they can cause invasive fungal infec-
tions (IFIs) that are associated with high morbidity and 
mortality. The fungal genera most often associated with 
IFIs are CandidaAspergillus, and Cryptococcus.

6

Patients with oral fungal infections are often treated with 

polyene or azole antifungal drugs.

1

 Although azoles, such 

as fl uconazole (FLC), have better solubility and less neph-
rotoxicity than polyenes, fungal azole resistance can be a 
problem.

7

 Candida glabrata and C. krusei are innately less 

susceptible to azoles than other Candida species, and C. 
albicans
 can develop azole resistance. The molecular mech-
anisms of fungal azole drug resistance have been studied 
extensively,

7–10

 but mostly in vitro. The majority of fungal 

cells in the oral cavity, however, are associated with bio-
fi lms, and microorganisms in biofi lms are often more resis-
tant to antimicrobials than planktonic cells.

11–13

 This review 

investigates the contribution of molecular resistance mech-
anisms and biofi lm growth to the antifungal drug resistance 
of oral fungi.

Oral fungi

Presence of fungi in the oral cavity

The human mouth supports a diverse microbiota. There are 
thought to be several hundred bacterial species and several 
thousand phylotypes that inhabit the oral cavity.

14,15

 These 

Odontology (2010) 98:15–25

 

© The Society of The Nippon Dental University 2010

DOI 10.1007/s10266-009-0118-3

Masakazu Niimi · Norman A. Firth · Richard D. Cannon

Antifungal drug resistance of oral fungi

M. Niimi · N.A. Firth · R.D. Cannon (*)
Department of Oral Sciences, School of Dentistry, University of 
Otago, 310 Great King Street, Dunedin 9016, New Zealand
Tel. 

+

64-3-479-7081; Fax 

+

64-3-479-7078

e-mail: richard.cannon@otago.ac.nz

Received: November 9, 2009 / Accepted: November 28, 2009

REVIEW ARTICLE

background image

16

estimates are based on data from culture-independent 
molecular analyses of samples from healthy and diseased 
mouths.

16

 Such molecular techniques allow the identifi ca-

tion of microbial species that are diffi cult to culture and can 
measure small genetic differences between related phylo-
types. One of the most commonly used methods to identify 
bacteria in the oral cavity is the cloning and sequencing of 
16S rRNA genes amplifi ed by polymerase chain reaction 
(PCR) from DNA extracted from oral samples.

17,18

 This 

analysis has been taken to a greater level of sensitivity by 
the advent of high-throughput pyrosequencing of PCR-
amplifi ed DNA, which does not require cloning steps. A 
recent pyrosequencing analysis of bacterial 16S rDNA 
extracted from human saliva and plaque identifi ed 3621 and 
6888 species-level phylotypes, respectively.

14

 Other tech-

niques used to identify and quantify oral bacteria include 
real-time quantitative PCR (qPCR) and checkerboard 
DNA–DNA hybridization.

18,19

There have been relatively few similar investigations of 

fungi present in the oral cavity. Classically, yeast have been 
identifi ed from saliva, oral swabs, plaque, oral rinses, or 
concentrated oral rinses by culturing them on selective or 
differential agar.

3,20

 Such techniques can use chromogenic 

primary isolation media such as CHROMagar for the pre-
sumptive identifi cation of the most prominent Candida 
species including C. albicansC. dubliniensisC. glabrataC. 
krusei
,  C. tropicalis, and in some instances C. parapsilo-
sis
.

21–23

 Other culture-based growth, morphology, and bio-

chemical tests are available in kit format for the identifi cation 
of fungi isolated from clinical samples. These kits include 
API ID 32C, API 20C AUX, and RapID Yeast Plus.

23,24

 

Although these kits are relatively easy to use, the results 
often show poor discrimination between possible species, 
and the process involves two culturing steps that can take 
up to 72 h.

25

 Molecular identifi cation techniques allow the 

rapid and sensitive detection of fungi, but these methods 
are less frequently applied to the detection of fungi than to 
the detection of bacteria. Techniques that have been used 
include checkerboard DNA–DNA hybridization,

26,27

 26S 

rDNA sequencing,

28

 PCR,

25,29

 and qPCR.

30

 Early culture-

based detection studies, reviewed by Odds, found yeast 
present in the oral cavities of from 2.0% to 71.3% of healthy 
individuals sampled, with a mean carriage rate of 25.5%.

31

 

The mean carriage rate was higher in patients (47.0%), 
refl ecting underling predisposing conditions in hospitalized 
individuals. The most common yeast isolated from human 
mouths is C. albicans, and mean carriage rates of 17.7% and 
40.6% were found in healthy individuals and patients, 
respectively.

31

 C. albicans comprised approximately 70% of 

all isolates; the next most common species were C. tropica-
lis
,  C. glabrata,  C. parapsilosis,  C. krusei,  C. kefyr, and C. 
guilliermondii
. These studies were carried out before the 
discovery of C. dubliniensis.

32

 This species is very similar, 

genotypically and phenotypically, to C. albicans

33

 and so 

was probably counted as C. albicans before its discovery. 
These culture-based results have been confi rmed by recent 
molecular studies with C. albicans being identifi ed as the 
most prevalent oral yeast, followed by C. glabrataC. dub-
liniensis
,  C. tropicalis,  C. krusei,  C. parapsilosis,  C. famata

C. guilliermondii, and in some cases Saccharomyces cerevi-
siae
.

28–30

 Although other fungi that cause respiratory dis-

eases, such as Cryptococcus neoformans and Aspergillus 
fumigatus
, pass through the oral cavity they are rarely, if 
ever, detected in oral samples, indicating that they are not 
part of the normal commensal fl ora.

Thus, the oral fl ora contains relatively few fungal species. 

In addition, there are very few yeast cells in mouths com-
pared to bacterial cells. The oral cavity presents many sur-
faces for colonization by oral microorganisms. Yeast can be 
found on mucosal surfaces including the tongue, teeth, and 
dental prostheses, in dental plaque, and in saliva.

2,3,34,35

 

Saliva is easily obtained and yeast in saliva can be indicative 
of microbial colonization at other oral sites. An early study 
found that the mean concentration of yeast in the saliva of 
healthy adults was 296/ml.

34

 More recently we have found 

a similar concentration of yeast (mean, 387/ml) in the saliva 
of 134 children 7–8 years old (Boyd and Cannon, unpub-
lished data); this compares with a bacterial concentration 
of approximately 10

7

–10

8

/ml saliva.

36,37

 Despite the low con-

centrations of yeast in the oral cavity, they can still give rise 
to oral disease, usually when the host’s immune system 
becomes compromised or suppressed.

2,3

 These oral fungi 

are, therefore, opportunistic pathogens.

Oral fungal infections

Oral candidiasis is the most common oral mucosal fungal 
infection.

1

 There are a number of presentations of oral can-

didiasis, which can be classifi ed as acute or chronic, accord-
ing to the timeframe of the infection (Table 1).

Pseudomembranous candidiasis

Pseudomembranous candidiasis can either be acute or, in 
the immunocompromised and in other groups such as long-
term users of corticosteroid inhalers (asthmatics), it can be 
chronic. It most frequently affects infants, the elderly, and 
the terminally ill.

1

 It may also be an indicator of an underly-

ing serious medical condition such as diabetes, leukemia, 
other malignancy, or human immunodefi ciency virus (HIV) 
infection/AIDS. The clinical appearance consists of non-
adherent creamy white patches or fl ecks, which are easily 
wiped off with a swab or a mouth mirror. Scraping may 
produce bleeding and generally reveals an erythematous 
base. The soft palate, oropharynx, tongue, buccal mucosa, 
and gingiva are commonly affected.

38

 The pseudomem-

branes consist of a mesh of Candida hyphae, entangled with 
desquamated epithelial cells, fi brin, keratin, necrotic debris, 
and bacteria. If pseudomembranous candidiasis extends to 
the pharynx, it is termed oropharyngeal candidiasis (OPC). 
This condition affl icts many AIDS patients

39

 and is also a 

signifi cant infection in cancer patients being treated with 
chemotherapy and/or radiotherapy.

5,40

 OPC is frequently 

the fi rst clinical symptom in HIV-positive patients, before 
the onset of overt AIDS.

40

 In cancer patients, the increased 

incidence of OPC results from both the debilitating effects 

background image

17

of the cancer itself and from the immunosuppressive treat-
ment for the cancer.

Erythematous candidiasis

Erythematous candidiasis, similar to pseudomembranous 
candidiasis, may be acute or chronic depending on its dura-
tion. The acute form frequently follows a course of broad-
spectrum antibiotics or topical antibiotics and has also been 
called antibiotic sore mouth. The antibiotics probably 
reduce bacterial competition in the oral cavity and allow the 
overgrowth of fungi. This form of candidiasis is painful, and 
patients may complain of a burning sensation in the mouth.

1

 

Erythematous candidiasis may also be associated with the 
use of corticosteroid inhalers.

Chronic erythematous candidiasis occurs on the palatal 

mucosa beneath full or partial maxillary dentures and is 
sometimes called Candida-associated denture stomatitis or 
denture sore mouth.

1

 There is a chronic edema of the 

mucosa in contact with the denture and often a sharp 
demarcation between the affected and unaffected tissue. 
Occasionally the edentulous mandible may be involved. 
This form of candidiasis is more frequent in those who do 
not remove their dentures at night and the wearers of old 
dentures. The dentures can act as a reservoir for infecting 
yeast, and several factors, such as surface roughness and 
hydrophobicity, contribute to the ability of Candida to colo-
nize the dental acrylic.

41

 In addition to antifungal treatment 

(see below), good oral hygiene is effective in alleviating this 
condition; patients should remove their dentures at night 
and, following cleaning, soak them in either 2% chlorhexi-
dine gluconate or 1% sodium hypochlorite overnight.

38

Plaque-like/nodular candidiasis

Plaque-like/nodular candidiasis (which is also called chronic 
hyperplastic candidiasis or candidal leukoplakia) is charac-
terized by irregular white plaques that cannot be removed 
by scraping. It is less common than pseudomembranous or 
erythematous candidiasis. Lesions are generally bilateral 
and occur on the buccal mucosa near the commissures of 
the lips at the level of the occlusal plane. The lesions may 

also present as speckled or nodular lesions. Often biopsy is 
indicated to confi rm the diagnosis because there may often 
be more serious clinical signs (for example, induration or 
ulceration). The frequency of epithelial dysplasia in plaque-
like/nodular candidiasis is four to fi ve times higher than that 
estimated for other oral leukoplakias, and 9%–40% of 
lesions develop oral cancer compared with 2%–6% in 
leukoplakias in general.

38

Angular cheilitis

Angular cheilitis is characterized by erythema, crusting, and 
cracking in the commissural regions of the lips. This 
Candida-associated lesion frequently has a bacterial com-
ponent, such as Staphylococcus aureus. Predisposing factors 
include defi ciency states (iron, folate, or vitamin B

12

), dia-

betes mellitus or HIV/AIDS, skin creasing resulting from 
age, poor dentures with reduced vertical dimension, and 
pooling of saliva in the affected areas. Angular cheilitis may 
indicate that an intraoral Candida infection is present.

Median rhomboid glossitis

Another  Candida-associated lesion is median rhomboid 
glossitis, which often presents as a diamond-shaped lesion 
on the dorsum of the tongue near the junction of the ant-
erior two-thirds and posterior one-third. An oral swab may 
confi rm the presence of yeast in a mixed fl ora. A biopsy is 
not necessary unless other clinical signs of major concern 
are present, as the lesion often responds to antifungal 
therapy.

Other Candida infections occur rarely, usually in patients 

with underlying medical conditions. These infections include 
chronic mucocutaneous candidiasis, cheilocandidiasis, mul-
tifocal candidiasis, and Candida endocrinopathy syndrome. 
Systemic infections caused by other fungi sometimes show 
oral involvement. Oral aspergillosis can involve the soft 
palate, tongue, and gingiva. Lesions on the soft palate have 
generally been associated with upper respiratory tract 
involvement. Palatal lesions consist of oral ulceration sur-
rounded by a margin of black tissue. The gingival lesions 
are painful, infl amed, and ultimately ulcerated with tissue 

Table 1. Classifi cation of presentation of oral candidiasis

Candida infection

Clinical presentation

Acute
  Pseudomembraneous

Multiple removable white plaques

  Erythematous

Generalized redness of tissue

Chronic
  Pseudomembraneous

Multiple removable white plaques

  Erythematous

Generalized redness of tissue on fi tting surface of upper denture

  Plaque-like/nodular

Fixed white plaques on commissures

Candida-associated
  Angular cheilitis

Bilateral cracks at angles of mouth

  Median-rhomboid glossitis Fixed red/white lesion, dorsum of tongue

Source:  Adapted from Cannon and Firth (2006)

38

background image

18

necrosis.

38

 Cryptococcosis, caused by C. neoformans, rarely 

involves the oral cavity. The oral lesion may present as 
ulceration or as a nodule on the tongue, palate, gingivae, or 
tooth socket following extraction. The differential diagnosis 
includes squamous cell carcinoma, tuberculosis, and trau-
matic ulcer. Oral histoplasmosis may occur in either pulmo-
nary or disseminated histoplasmosis or as a primary lesion 
in an otherwise healthy person. Oral histoplasmosis is 
sometimes seen in patients with HIV/AIDS and may rarely 
be the initial manifestation of the disease. Oral lesions can 
present as single or multiple indurated ulcers or as nodular 
lesions. The palate, tongue, buccal mucosa, gingiva, and lips 
are the usual sites of involvement. These oral manifesta-
tions of fungal disease are rare; the most common oral 
fungal diseases are forms of candidiasis.

Current treatments for oral fungal infections

There are four main antifungal drug classes with different 
modes of action (Table 2). The fl uorinated pyrimidine ana-
logue 5-fl uorocytosine (5-FC) causes aberrant RNA synthe-
sis and interferes with DNA replication.

7,8

 The polyenes, 

such as nystatin (NYS) and amphotericin B (AMB), were 
developed in the 1950s. They are heterocyclic amphipathic 
molecules that insert into lipid bilayers, bind to ergosterol, 
and aggregate in annuli to form pores. These pores disrupt 
the fungal plasma membrane integrity and permit the effl ux 
of cations such as K

+

, which results in cell death, and so the 

drugs are fungicidal. Polyenes are also thought to cause 
oxidative damage.

7,9,42

 The azole antifungals interfere with 

sterol biosynthesis. They inhibit the cytochrome P

450

 14

α

-

lanosterol demethylase, encoded by the ERG11 gene, which 
is involved in ergosterol biosynthesis. Inhibition of Erg11p 
depletes the ergosterol content of membranes and results 
in the accumulation of toxic sterol pathway intermediates, 
which inhibit growth.

7,8

 Azoles are thus usually fungistatic 

for  C. albicans. The fi rst azole drugs developed were the 
imidazoles such as miconazole (MCZ) and ketoconazole 

(KTZ).

43

 These drugs are relatively insoluble. Imidazoles 

were followed by triazoles, such as FLC, which have 
increased water solubility and improved pharmacokinetic 
properties. Another triazole with a wider spectrum of activ-
ity is itraconazole (ITC). The most recently developed class 
of antifungals is the echinocandins. Originally obtained 
from soil fungi in the 1970s, semisynthetic derivatives of the 
cyclic lipopeptides have been developed such as caspofun-
gin, micafungin, and anidulafungin. These drugs non-
competitively inhibit 

β

(1,3)-glucan synthase activity and 

synthesis of 

β

(1,3)-glucan, the major and essential compo-

nent of the fungal cell wall.

44

 The echinocandins are only 

available for parenteral application and are not currently 
used for oral fungal infections.

The antifungal drugs most commonly used to treat 

patients with oral fungal infections are the polyenes and 
azoles.

1

 NYS is not absorbed from the gastrointestinal tract 

(GIT) and therefore it is used for topical application intra-
orally (Table 3). Unfortunately, it has an unpleasant taste, 
so preparations for oral use contain fl avoring agents. NYS 
comes in a number of forms including a cream, an ointment, 
tablets, a suspension, a gel, a pessary, and a pastille. AMB 
is also not absorbed very well from the GIT and therefore 
again is generally for topical use and available in similar 
formulations to NYS. AMB and NYS can be used together, 
for example, NYS ointment applied to the fi tting surface of 
denture and AMB lozenges in the treatment of denture-
associated chronic erythematous candidiasis, or NYS oint-
ment applied to the affected tissue and AMB lozenges in 
the treatment of angular cheilitis. Not all forms of these 
agents are available in all countries.

Azoles are also used for treating patients with oral can-

didiasis. MCZ is not absorbed from the GIT and is mainly 
used topically. It is reported to have a bacteriostatic effect 
in addition to being active against Candida and therefore is 
useful in the treatment of angular cheilitis. However, it can 
be absorbed topically in suffi cient amounts to interact with 
warfarin drugs such as Coumadin (widely used as an anti-
coagulant). MCZ potentiates this effect, and the resultant 

Table 2.  Antifungal drugs, their targets, and possible resistance mechanisms

Antifungal class and examples

Primary target (mode of action)

Resistance mechanisms

Fluorinated pyrimidine analogues
 e.g., 

5-Fluorocytosine

RNA and DNA synthesis (misincorporation 

of 5-fl urouracil)

Mutation in Fur1p (uracil phosphoribosyl 

transferase)

Polyenes
 e.g., 

Nystatin

 Amphotericin 

B

Cell membrane ergosterol (disruption of 

plasma membrane integrity, and oxidative 
damage)

Induction of low membrane ergosterol content 

detected in some fungi

Imidazoles
 e.g., 

Miconazole

 Clotrimazole
 Ketoconazole
Triazoles
 e.g., 

Fluconazole

 Itraconazole

Ergosterol biosynthesis (inhibition of Erg11p, 

involved in ergosterol biosynthesis; 
conversion of Erg11p substrate into toxic 
methylated sterols)

Mutations in Erg11p
Induced overexpression of Erg11p
Effl ux via ABC and MFS transporters
Tolerance to methylated sterols via mutation 

in ERG3 

Echinocandins
 e.g., 

Caspofungin

 Micafungin
 Anidulafungin

Cell-wall biosynthesis (inhibition of 

β

(1-3)glucan synthase)

Mutation in 

β

(1-3)glucan synthase

Adapted from Cannon et al. (2009)

10

background image

19

internal hemorrhage could potentially be fatal. Topical 
preparations of clotrimazole (oral troches) and ITC (solu-
tion) can also be used for oral candidiasis.

KTZ is absorbed systemically after oral administration. 

It is useful in the treatment of chronic mucocutaneous can-
didiasis and oral candidiasis in immunocompromised 
patients. It can have side effects such as nausea, cutaneous 
rash, pruritus, and hepatotoxicity. Because alteration to 
liver function can occur, monitoring of liver enzymes is 
essential during KTZ treatment. The triazole FLC has 
increased water solubility and is effective in treating HIV/
AIDS-related oral candidiasis such as OPC,

39

 which is also 

a signifi cant infection in cancer patients being treated with 
chemotherapy and/or radiotherapy.

5,40

 The prolonged use of 

azoles, however, can result in the induction, or selection, of 
azole-resistant Candida strains.

Resistance of fungi to antifungal drugs

Resistance of fungi to polyenes is rare. The resistance can 
be caused by a reduction in the amount of plasma membrane 
ergosterol, to which polyenes bind (see Table 2). There is 
primary (intrinsic) resistance in some isolates of Candida 
lusitaniae
,  C. lipolytica, and C. guilliermondii.

42

  Aspergillus 

terreus and A. fl avus are frequently associated with AMB 
resistance in both in vitro and in vivo studies.

45–49

 Although 

the molecular mechanisms are not well understood, it is 
clear that A. terreus has a much lower ergosterol content 
than most other fungal species,

48,49

 and alterations in cell-

wall glucans have been shown to lead to AMB resistance in 
A. fl avus.

42

 Mutations in C. albicans ERG3, which encodes 

a C-5 sterol desaturase (Erg3p), an enzyme in the ergosterol 
biosynthetic pathway, lower the concentration of ergosterol 
in the plasma membrane and cause AMB resistance.

50

 These 

mutations also confer cross-resistance to azoles.

7,50

There is signifi cant primary and secondary (acquired) 

resistance of Candida and Aspergillus species to 5-FC, limit-
ing its utility. Resistance of clinical C. albicans isolates to 
5-FC most often correlates with mutations in the enzyme 
uracil phosphoribosyltransferase (Fur1p) that prevent the 

conversion of 5-fl uorouracil to 5-fl uorouridine monophos-
phate (see Table 2).

8

 Mutations in cytosine deaminase 

(CaFca1p) may also contribute to resistance.

51

 The inci-

dence of 5-FC resistance in fungi means it is primarily used 
in combination with other antifungals such as AMB.

52

 There 

is a low incidence of echinocandin resistance in clinical 
isolates of Candida  species that are normally sensitive to 
echinocandins, despite the ready in vitro selection of echi-
nocandin-resistant variants of C. albicans

53,54

 or S. cerevi-

siae.

55

 Echinocandin-resistant Candida isolates usually have 

single amino acid point mutations in the 

β

(1,3)-glucan syn-

thase subunit (Gsc1p) that is orthologous to S. cerevisiae 
Fks1p.

56,57

There are multiple mechanisms that can give rise to 

azole resistance in fungi (see Table 2). The drug target, 
Erg11p, can be overexpressed or can develop point muta-
tions that reduce FLC binding.

7,8,58,59

 Common mutations in 

C. albicans Erg11p that confer moderate azole resistance 
are Y132H, S405F, G464S and R467K.

60–62

 Azole-induced 

C. albicans growth inhibition is caused by reduction in the 
ergosterol content of membranes and also by the accumula-
tion of toxic ergosterol precursors such as 14

α

-methyler-

gosta-8,24(28)-dien-3

β

,6

α

-diol. If Erg3p is inactivated by 

mutation, in the presence of FLC these cells accumulate the 
nontoxic sterol 14

α

-methylfecosterol.

Fungal resistance to azole drugs

High-level azole resistance in several Candida species cor-
relates with overexpression in the plasma membrane of 
proteins that pump the drug out of the cell, thus reducing 
intracellular azole concentrations to levels at which Erg11p 
is not inhibited.

59,61,63

 There are two main classes of effl ux 

pumps: ATP-binding cassette (ABC) proteins and major 
facilitator superfamily (MFS) pumps.

10

 These membrane 

proteins pump compounds across cell membranes using dif-
ferent energy sources. The ABC proteins are primary trans-
porters that use the hydrolysis of ATP. The MFS pumps are 
secondary transporters that utilize the proton-motive force 
across the plasma membrane.

Table 3.  Antifungal treatment of oral candidiasis

Antifungal

Treatment

Candida infection

Nystatin

Cream applied to affected area 3–4 times daily
Or pastille (100 000 units) sucked after meals 4 times daily for 7 days
Or oral suspension (100 000 units) applied after meals 4 times daily for 7 days

Pseudomembraneous, erythematous, 

plaque-like/nodular, angular cheilitis, 
median rhomboid glossitis

Amphotericin B

Lozenge (10 mg) sucked 4 times daily for 10–28 days
Or oral suspension taken after food 4 times daily for 14 days

Pseudomembraneous, erythematous, 

plaque-like/nodular, angular cheilitis, 
median rhomboid glossitis

Miconazole

Oral gel applied to the affected area 3–4 times daily
Or cream applied twice daily; continue for 10 days after lesion heals

Erythematous, plaque-like/nodular, 

angular cheilitis

Clotrimazole

Cream applied to the affected area 2–3 times daily for 3–4 weeks
Or solution (5 ml) 3–4 times daily for 14 days

Angular cheilitis

Ketoconazole

Tablets (200 mg) taken 1–2 times daily with food for 14 days

Chronic mucocutaneous candidiasis

Fluconazole

Capsules (100 mg) once daily for 7–14 days

Pseudomembraneous, chronic 

mucocutaneous candidiasis

Itraconazole

Capsules (100 mg) once daily immediately after food for 14 days

Pseudomembraneous, chronic 

mucocutaneous candidiasis

Source:  Adapted from Samaranayake et al. (2009)

1

 and Cannon and Firth (2006)

38

background image

20

ABC pumps have important physiological functions and 

are present in all organisms; most fungal species have mul-
tiple ABC genes.

10

 The sequencing of the S. cerevisiae 

genome

64

 revealed that it contains 29–30 ABC genes.

65,66

 C. 

albicans has a similar number of ABC genes (27),

67

 and C. 

glabrata has approximately two-thirds that number (18).

68

 

Much larger numbers of ABC genes are found in A fumiga-
tus
 (49) and C. neoformans (54).

69,70

 In several pathogenic 

fungi the expression of ABC genes has been correlated with 
increased resistance to azole antifungals. In C. albicans
transcriptional upregulation of ABC genes CDR1 and 
CDR2 has been shown, in vitro, for FLC-resistant isolates 
relative to their susceptible parental strains.

71–73

 Overex-

pression of ABC genes in azole-resistant isolates of C. gla-
brata

74,75

 and C. neoformans

76,77

 has also been reported. In 

C. krusei, the expression of the ABC effl ux pump ABC1 in 
combination with an insensitivity of Erg11p to azoles is 
thought to be responsible for its innate azole resistance 
phenotype.

78,79

In general, MFS transporters are thought to contribute 

less to the azole resistance of fungi than ABC pumps.

10

 

In the C. albicans genome database (CGD http://www.
candidagenome.org/),

80

 six genes are annotated as MFS like 

[MDR1  (BEN

R

),  FLU1,  TPO3,  orf19.2350,  NAG3, and 

MDR97]. Of these, only Mdr1p and Flu1p have substrates 
that are antifungals, and there is no evidence of FLU1 
expression being associated with azole resistance in clinical 
isolates. Furthermore, C. albicans Mdr1p is relatively spe-
cifi c for FLC,

7,81

 whereas many azole drugs can act as sub-

strates for ABC pumps Cdr1p and Cdr2p.

82

 Expression of 

C. albicans MDR1 has been detected in both in vitro-derived 
FLC-resistant mutants

63

 and in azole-resistant clinical iso-

lates,

61,73,83

 but it is not as frequently detected as expression 

of ABC genes. In contrast, in C. dubliniensis there  is a 
strong association between the expression of the MFS trans-
porter Mdr1p and FLC resistance.

84

Most investigations of the contribution of fungal pump 

expression to azole resistance have measured mRNA 
expression, but this may not equate to levels of pump 
protein expression, consequent to mRNA turnover. A 
recent analysis of transporter protein expression in a collec-
tion of C. albicans clinical isolates with reduced FLC sus-
ceptibilities showed that ABC pump Cdr1p was expressed 
in greater amounts than Cdr2p, and only one isolate showed 
MFS pump Mdr1p expression.

85

 Furthermore, it was shown 

that Cdr1p rather than Cdr2p mediated most FLC effl ux 
function in these clinical isolates. These studies were, 
however, conducted in vitro, and the levels of pump expres-
sion required to achieve clinically signifi cant resistance, in 
the complex oral environment, have not been determined.

Oral biofi lms and antifungal drug resistance

Biofi lm formation

Although saliva contains a high concentration of bacteria, 
most of the microorganisms in the oral cavity are not in free 
solution (planktonic) but are present in biofi lms;  well-

defi ned multispecies communities embedded in a matrix 
consisting largely of extracellular polymers.

11

 Oral fungi, 

which as already discussed are predominantly Candida 
species, are also present in biofi lms.

13,86

  Candida biofi lms 

can develop on medical devices such as indwelling intravas-
cular catheters, implanted devices, and prostheses and are 
diffi cult to eliminate because of their antifungal drug resis-
tance.

87

  Candida biofilms are of clinical importance in the 

development of denture stomatitis,

41

 and Candida biofi lms 

can damage silicon voice prostheses and necessitate their 
replacement.

86,88

 The presence of Candida in the relatively 

well-protected biofi lm environment may explain the ability 
of the yeast to cause recalcitrant and recurrent infections.

Biofilm formation proceeds through different develop-

mental phases. The fi rst phase is microbial adhesion. C. 
albicans
 cells can adhere to a variety of oral surfaces, includ-
ing hydroxyapatite (a model for dental enamel),

89

 to epithe-

lial cells,

90

 and can coaggregate with oral streptococci (Fig. 

1).

91

 In many cases the adhesion of C. albicans to oral sur-

faces is promoted by saliva adsorbed either to the yeast or 
to the oral surface as a pellicle.

89,90,92,93

 Adhesion of C. albi-

cans to oral surfaces is mediated by cell-surface adhesins, 
which are often mannoproteins. Well-characterized adhe-
sions implicated in biofi lm formation include Hwp1p 
(hyphal wall protein)

94

 and Als (agglutinin-like sequence) 

family members such as Als3p.

95

  C. albicans Bcr1p, a zinc 

fi nger transcription factor, plays a signifi cant role in biofi lm 
formation by controlling Als3p expression.

96

 Other adhesins 

such as Als1p, Hwp1p, and Ece1 (extent of cell elongation) 
involved in biofi lm formation are also under the control 
of Bcr1p.

96

 Fungi present in saliva are often in an ovoid 

yeast morphology. Once C. albicans yeast cells adhere onto 
a surface, they often form germ tubes that extend into 
hyphae and pseudohyphae, and the biofi lm matures and 
becomes enclosed in a matrix of extracellular polysaccha-
ride (Fig. 2).

13

E

B

GT

C

B

M

Fig. 1. Cryo-scanning electron micrograph of Candida albicans cells 
growing as a multispecies biofi lm on buccal epithelial cells. CC. albi-
cans
 cell; B, bacteria; E, epithelial cell, GTC. albicans germ tube; M
extracellular matrix. Bar 5 

μ

m. (Kindly provided by Professor M. 

Tokunaga)

background image

21

It is well known that microorganisms in biofi lms “com-

municate” and interact through the secretion and detection 
of diffusible chemicals such as quorum-sensing molecules 
(QSMs) and bacteriocins.

11

 C. albicans is known to secrete 

a number of quorum-sensing molecules. The best-studied 
C. albicans QSM is farnesol, which represses hyphal forma-
tion at high cell density and inhibits biofi lm formation.

97,98

 

Farnesol is continually released from the cells during 
growth, and its rate of accumulation is roughly proportional 
to the cell density.

97

 It has been proposed that QSMs are 

secreted by cells in the late stages of biofi lm formation to 
inhibit hyphal formation when the cell concentration is high 
and therefore promote the dispersal of yeast cells to colo-
nize new environments.

99

Fungi, such as C. albicans, interact with bacteria within 

biofi lms (see Figs. 1, 2). Synergistic and antagonistic interac-
tions occurring between Candida and bacteria contribute to 
the development of mixed-species biofi lm communities. For 
example, diffusible substances from Streptococcus gordonii 
can overcome the hyphal-inhibitory effect of farnesol and 
promote hyphal growth and biofi lm formation, leading to a 
synergy in biofi lm formation.

100

 In contrast, the interaction 

between C. albicans and Pseudomonas aeruginosa is antag-
onistic;  P. aeruginosa secretes homoserine lactones, QSMs 
that inhibit hyphal formation and eventually kill C. 
albicans
.

101

Antifungal drug resistance of biofi lms

Candida cells in biofi lms display different phenotypes com-
pared to their planktonic counterparts in terms of their 
markedly enhanced resistance to antifungal agents and pro-
tection from host defenses.

12

 Compared to planktonic cells, 

Candida biofi lms have been demonstrated to show increased 
resistance to a variety of antifungal agents including AMB, 
FLC, ITC, and KTC.

102

 Minimum (growth) inhibitory con-

centrations (MICs) of such antifungals for biofi lm cells are 
commonly determined using growth assays that measure 
the metabolic reduction of dye 2,3-bis(2-methoxy-4-nitro-5-
sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT).

103

 The 

precise mechanisms by which Candida biofilms resist the 
actions of antifungal agents are not known, although several 
factors have been proposed: these include altered metabolic 

activity of biofi lm cells, the presence of extracellular materi-
als that reduce antifungal penetration, expression of resis-
tance genes, and the presence of a subpopulation of resistant 
“persister” cells.

12,102

 Comparison of the susceptibility of the 

C. albicans biofi lms to AMB with that of planktonic cells 
grown at the same rates in continuous culture using a 
chemostat bioreactor showed that biofi lm cells were more 
resistant than planktonic cells.

104

 The emergence of drug 

resistance of biofilm cells to antifungals, including AMB, 
FLC, chlorhexidine, and NYS, increased with the matura-
tion of the biofi lm. The increased drug resistance was asso-
ciated with the concomitant increase in metabolic activity 
of developing biofilms.

105

Antifungal drug resistance is acquired early in biofi lm 

formation and appears to be governed by different mecha-
nisms in early and late biofi lms.  The  C. albicans genes 
encoding ABC (Cdr1p, Cdr2p) and MFS (Mdr1p) trans-
porters are upregulated in the early stage of biofi lm forma-
tion.

106,107

 However, mutants lacking one or more of the drug 

effl ux pumps were FLC resistant at later stages of biofi lm 
formation.

98,108

 Therefore, effl ux pumps may play a role in 

FLC resistance only in the early phase of biofi lm develop-
ment.

98,107

 A phase-dependent expression of ABC pump 

genes CDR1 and CDR2 has also been described during C. 
glabrata
 biofi lm formation.

109

 The sterol composition of C. 

albicans biofi lms and planktonic cells has been investigated. 
A signifi cantly decreased level of ergosterol in biofi lm cells 
has been reported.

107

 In contrast, an overexpression of both 

ERG25 and ERG11 (also known as ERG16) was observed 
for later stages of biofi lm  formation.

110

 Altered ergosterol 

content of fungal cells could affect their polyene susceptibil-
ity. An in vivo biofi lm model showed that CDR1 and CDR2 
mRNAs were increased in biofi lm cells, but ERG11 and 
MDR1 expression did not appear to be affected in either 
biofi lm or planktonic cells.

111

 It is important to note that 

fungal cells within biofi lms will experience stress because of 
changes in pH and metabolic products from other microor-
ganisms. Such stress can induce physiological and genetic 
responses that confer drug resistance.

112

Drug exclusion by the extracellular matrix is considered 

to be another possible resistance mechanism for Candida 
biofilms.

12,102

 The extracellular matrix contains carbohy-

drate, protein, hexosamine, phosphorus, and uronic acid 
and may act as a physical barrier to prevent penetration of 
antifungal agents to their target sites. Indeed, it has been 
shown that the matrix made a significant contribution to 
drug resistance in Candida biofilms and that the composi-
tion of the matrix materials was an important resistance 
determinant.

113

 A putative role of 

β

(1,3)-glucans in C. albi-

cans biofi lm resistance has been suggested because 

β

(1,3)-

glucan levels increased signifi cantly  in  biofi lm  yeast  cell 
walls and matrix material, compared to their planktonic 
counterparts, and because exogenous biofi lm matrix and 
soluble 

β

(1,3)-glucan reduced the activity of FLC against 

planktonic cells.

114

 A recent study suggests that the zinc-

responsive transcription factor Zap1p, which regulates 
genes encoding glucoamylases and alcohol dehydrogenases, 
may control matrix formation including the amount of 

β

(1,3)-glucan in C. albicans biofi lms.

115

 “Persister” cells are 

Antifungal (AF)

AF

AF

AF

Inter-microbial interactions

Biofilm extracellular 

matrix

Bacteria

Yeast

Efflux 
pump

Salivary 

pellicle

Oral

surface

C. albicans

germ tube

Fig. 2.  Interactions between fungi and other microorganisms in an oral 
biofi lm that could result in antifungal (AF) resistance 

background image

22

a subpopulation of cells that can remain viable in the pres-
ence of antimicrobial drugs. Candida biofi lms have been 
found to contain highly antifungal-tolerant persister cells 
that are not found in planktonic cultures.

116

 However, the 

mechanism of survival of persister cells in the biofi lm is not 
clearly understood. Taken together, these observations 
clearly indicate that the antifungal drug resistance of bio-
fi lms is a multifactorial phenomenon.

The incorporation of fungi in oral biofi lms presents clini-

cal problems for eradication of the fungus using antifungals. 
The newer classes of antifungal agents such as the echino-
candins and lipid formations of AMB, however, appear 
effective against Candida biofi lms,

117–119

 although there is a 

report that Candida isolates from urine that were grown as 
biofi lm-associated cell phenotypes were resistant to caspo-
fungin.

120

 Other novel approaches to the control of fungal 

biofi lms include the use of anti-

β

-glucan antibodies, which 

have been shown to inhibit Candida adhesion and growth.

121

 

Also, the combination of calcineurin inhibitor FK506 or 
cyclosporine A with FLC, which renders FLC fungicidal in 
planktonic cells,

122

 may be effective against the so-called 

biofi lm persisters and could be an alternative effective anti-
fungal regimen to inhibit the development of Candida 
biofi lm formation.

123

Conclusion

The majority of oral fungal infections are forms of candidia-
sis that respond relatively well to polyene treatment. Azoles 
provide advantages in terms of their solubility and reduced 
nephrotoxicity, but fungi can exhibit innate or acquired azole 
resistance. The resistance of oral fungi to azoles has two com-
ponents: one is the resistance of individual cells, and the 
other is resistance conferred by growth as a biofi lm. The 
mechanisms of azole resistance occurring in monoculture in 
vitro are well understood, and high-level resistance is often 
caused by the expression of effl ux pumps. The nature of anti-
fungal resistance seen clinically in vivo is more complex: it is 
multifactorial and in part the result of growth as a biofi lm. 
Although effl ux pumps may play a role in azole resistance 
early in biofi lm development, interactions with other micro-
organisms, the biofi lm extracellular matrix, and the response 
of the fungi to stress all contribute to the drug resistance of 
biofi lms. Therefore, the simple prescription of antifungal 
drugs has limitations. Improved treatment of patients with 
oral fungal disease may be achieved by physical removal of 
biofi lms or treatments that prevent biofi lm  development, 
such as inhibiting fungal adhesion or cell–cell communica-
tion, in combination with fungicidal antifungal drugs.

Acknowledgments  The authors gratefully acknowledge funding from 
the National Institutes of Health, USA (R01DE016885), the Founda-
tion for Research Science and Technology of New Zealand (IIOF grant 
UOOX0607) and a Health Science Research Grant for Research on 
Emerging and Re-emerging Infections Diseases (H19-Shinko-8) from 
the Ministry of Health, Labour and Welfare of Japan. The authors are 
grateful to Dr. A. Holmes for her critical evaluation of the manuscript 
and to Professor M. Tokunaga for providing the electron micrograph 
used in Fig. 1.

References

  1.  Samaranayake LP, Keung Leung W, Jin L. Oral mucosal fungal 

infections. Periodontology 2000 2009;49:39–59.

  2.  Cannon RD, Chaffi n WL. Oral colonization by Candida albicans

Crit Rev Oral Biol Med 1999;10:359–83.

  3.  Cannon RD, Holmes AR, Mason AB, Monk BC. Oral Candida

clearance, colonization, or candidiasis? J Dent Res 1995;74:
1152–61.

  4. de Repentigny L, Lewandowski D, Jolicoeur P. Immunopatho-

genesis of oropharyngeal candidiasis in human immunodefi ciency 
virus infection. Clin Microbiol Rev 2004;17:729–59.

  5. Davies AN, Brailsford SR, Beighton D. Oral candidosis in 

patients with advanced cancer. Oral Oncol 2006;42:698–702.

  6.  Pfaller MA, Pappas PG, Wingard JR. Invasive fungal pathogens: 

current epidemiological trends. Clin Infect Dis 2006;43:S3–14.

  7.  Sanglard D, Bille J. Current understanding of the modes of action 

of and resistance mechanisms to conventional and emerging anti-
fungal agents for treatment of Candida infections. In: Calderone 
RA, editor. Candida and Candidiasis. Washington, DC: ASM 
Press; 2002. p. 349–83

  8. Akins RA. An update on antifungal targets and mechanisms of 

resistance in Candida albicans. Med Mycol 2005;43:285–318.

  9.  Kontoyiannis DP, Lewis RE. Antifungal drug resistance of patho-

genic fungi. Lancet 2002;359:1135–44.

 10. Cannon RD, Lamping E, Holmes AR, et al. Effl ux-mediated 

antifungal drug resistance. Clin Microbiol Rev 2009;22:291–
321.

  11.  Hojo K, Nagaoka S, Ohshima T, Maeda N. Bacterial interactions 

in dental biofi lm development. J Dent Res 2009;88:982–90.

 12. Seneviratne CJ, Jin L, Samaranayake LP. Biofi lm lifestyle of 

Candida: a mini review. Oral Dis 2008;14:582–90.

 13. ten Cate JM, Klis FM, Pereira-Cenci T, Crielaard W, de Groot 

PW. Molecular and cellular mechanisms that lead to Candida 
biofi lm formation. J Dent Res 2009;88:105–15.

  14.  Keijser BJ, Zaura E, Huse SM, et al. Pyrosequencing analysis of 

the oral microfl ora of healthy adults. J Dent Res 2008;87:
1016–20.

 15. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defi ning 

the normal bacterial fl ora of the oral cavity. J Clin Microbiol 
2005;43:5721–32.

 16. Paster BJ, Boches SK, Galvin JL, et al. Bacterial diversity in 

human subgingival plaque. J Bacteriol 2001;183:3770–83.

  17.  Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. Then and now: use 

of 16S rDNA gene sequencing for bacterial identifi cation  and 
discovery of novel bacteria in clinical microbiology laboratories. 
Clin Microbiol Infect 2008;14:908–34.

  18.  Sakamoto M, Umeda M, Benno Y. Molecular analysis of human 

oral microbiota. J Periodont Res 2005;40:277–85.

  19.  Siqueira JF Jr, Rocas IN. Exploiting molecular methods to explore 

endodontic infections: Part 1. Current molecular technologies for 
microbiological diagnosis. J Endod 2005;31:411–23.

  20.  Sivakumar VG, Shankar P, Nalina K, Menon T. Use of CHRO-

Magar in the differentiation of common species of Candida
Mycopathologia 2009;167:47–9.

  21.  Odds FC, Bernaerts R. CHROMagar Candida, a new differential 

isolation medium for presumptive identifi cation of clinically 
important Candida species. J Clin Microbiol 1994;32:1923–9.

 22. Sullivan D, Coleman D. Candida dubliniensis: characteristics and 

identifi cation. J Clin Microbiol 1998;36:329–34.

  23.  Williams DW, Lewis MA. Isolation and identifi cation of Candida 

from the oral cavity. Oral Dis 2000;6:3–11.

  24.  Richardson MD, Carlson P. Culture- and non-culture-based diag-

nostics for Candida species. In: Calderone R, editor. Candida and 
candidiasis. Washington, DC: ASM Press; 2002. p. 387–94.

  25.  Liguori G, Di Onofrio V, Lucariello A, et al. Oral candidiasis: a 

comparison between conventional methods and multiplex poly-
merase chain reaction for species identifi cation.  Oral  Microbiol 
Immunol 2009;24:76–8.

  26.  Wall-Manning GM, Sissons CH, Anderson SA, Lee M. Checker-

board DNA-DNA hybridisation technology focused on the analy-

background image

23

sis of gram-positive cariogenic bacteria. J Microbiol Methods 
2002;51:301–11.

  27.  do Nascimento C, Ferreira de Albuquerque R Jr, Issa JP, et al. 

Use of the DNA checkerboard hybridization method for detec-
tion and quantitation of Candida species in oral microbiota. Can 
J Microbiol 2009;55:622–6.

 28. Davies AN, Brailsford S, Broadley K, Beighton D. Oral yeast 

carriage in patients with advanced cancer. Oral Microbiol 
Immunol 2002;17:79–84.

 29. Liguori G, Lucariello A, Colella G, De Luca A, Marinelli P. 

Rapid identifi cation of Candida species in oral rinse solutions by 
PCR. J Clin Pathol 2007;60:1035–9.

  30.  White PL, Williams DW, Kuriyama T, et al. Detection of Candida 

in concentrated oral rinse cultures by real-time PCR. J Clin 
Microbiol 2004;42:2101–7.

 31. Odds FC. Candida and candidiasis. Second edn. London: Baillière 

Tindall; 1988.

  32.  Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman 

DC.  Candida dubliniensis sp. nov.: phenotypic and molecular 
characterization of a novel species associated with oral candidosis 
in HIV-infected individuals. Microbiology 1995;141:1507–21.

  33.  Sullivan DJ, Moran GP, Coleman DC. Candida dubliniensis: ten 

years on. FEMS Microbiol Lett 2005;253:9–17.

  34.  Arendorf TM, Walker DM. The prevalence and intra-oral distri-

bution of Candida albicans in man. Arch Oral Biol 1980;25:
1–10.

 35. Radford DR, Challacombe SJ, Walter JD. Denture plaque and 

adherence of Candida albicans to denture-base materials in vivo 
and in vitro. Crit Rev Oral Biol Med 1999;10:99–116.

 36. Schaeken MJ, Creugers TJ, Van der Hoeven JS. Relationship 

between dental plaque indices and bacteria in dental plaque and 
those in saliva. J Dent Res 1987;66:1499–502.

  37.  Sekino S, Ramberg P, Uzel NG, Socransky S, Lindhe J. Effect of 

various chlorhexidine regimens on salivary bacteria and de novo 
plaque formation. J Clin Periodontol 2003;30:919–25.

 38. Cannon RD, Firth NA. Fungi and fungal infections of the oral 

cavity. In: Lamont RJ, Burne RA, Lantz MS, LeBlanc DJ, editors. 
Oral microbiology and immunology. Washington, DC: ASM 
Press; 2006. p. 333–48.

  39.  Baccaglini L, Atkinson JC, Patton LL, et al. Management of oral 

lesions in HIV-positive patients. Oral Surg Oral Med Oral Pathol 
Oral Radiol Endod 2007;103(suppl S50):e1–23.

  40.  Ship JA, Vissink A, Challacombe SJ. Use of prophylactic antifun-

gals in the immunocompromised host. Oral Surg Oral Med Oral 
Pathol Oral Radiol Endod 2007;103(suppl S6):e1–14.

 41. Pereira-Cenci T, Del Bel Cury AA, Crielaard W, Ten Cate JM. 

Development of Candida-associated denture stomatitis: new 
insights. J Appl Oral Sci 2008;16:86–94.

 42. Loeffl er J, Stevens DA. Antifungal drug resistance. Clin Infect 

Dis 2003;36:S31–41.

 43. Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging 

azole antifungal agents. Clin Microbiol Rev 1999;12:40–79.

 44. Douglas CM. Fungal beta(1,3)-d-glucan synthesis. Med Mycol 

2001;39(suppl 1):55–66.

 45. Gomez-Lopez A, Garcia-Effron G, Mellado E, et al. In vitro 

activities of three licensed antifungal agents against Spanish clini-
cal isolates of Aspergillus spp. Antimicrob Agents Chemother 
2003;47:3085–8.

 46. Steinbach WJ, Benjamin DK Jr, Kontoyiannis DP, et al. Infec-

tions due to Aspergillus terreus: a multicenter retrospective analy-
sis of 83 cases. Clin Infect Dis 2004;39:192–8.

 47. Steinbach WJ, Perfect JR, Schell WA, Walsh TJ, Benjamin DK 

Jr. In vitro analyses, animal models, and 60 clinical cases of inva-
sive Aspergillus terreus infection. Antimicrob Agents Chemother 
2004;48:3217–25.

  48.  Chamilos G, Kontoyiannis DP. Update on antifungal drug resis-

tance mechanisms of Aspergillus fumigatus. Drug Resist Update 
2005;8:344–58.

  49. Walsh TJ, Petraitis V, Petraitiene R, et al. Experimental pulmo-

nary aspergillosis due to Aspergillus terreus: pathogenesis and 
treatment of an emerging fungal pathogen resistant to amphoteri-
cin B. J Infect Dis 2003;188:305–19.

  50.  Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fl uconazole 

and cross-resistance to amphotericin B in Candida albicans from 
AIDS patients caused by defective sterol delta5,6-desaturation. 
FEBS Lett 1997;400:80–2.

  51.  Kanafani ZA, Perfect JR. Antimicrobial resistance: resistance to 

antifungal agents: mechanisms and clinical impact. Clin Infect Dis 
2008;46:120–8.

  52.  Saag MS, Graybill RJ, Larsen RA, et al. Practice guidelines for 

the management of cryptococcal disease. Infectious Diseases 
Society of America. Clin Infect Dis 2000;30:710–8.

  53.  Douglas CM, D’Ippolito JA, Shei GJ, et al. Identifi cation of the 

FKS1 gene of Candida albicans as the essential target of 1,3-beta-
d-glucan synthase inhibitors. Antimicrob Agents Chemother 
1997;41:2471–9.

 54. Kurtz MB, Abruzzo G, Flattery A, et al. Characterization of 

echinocandin-resistant mutants of Candida albicans: genetic, bio-
chemical, and virulence studies. Infect Immun 1996;64:3244–51.

 55. Douglas CM, Marrinan JA, Li W, Kurtz MB. A Saccharomyces 

cerevisiae mutant with echinocandin-resistant 1,3-beta-d-glucan 
synthase. J Bacteriol 1994;176:5686–96.

  56.  Baixench MT, Aoun N, Desnos-Ollivier M, et al. Acquired resis-

tance to echinocandins in Candida albicans: case report and 
review. J Antimicrob Chemother 2007;59:1076–83.

 57. Perlin DS. Resistance to echinocandin-class antifungal drugs. 

Drug Resist Update 2007;10:121–30.

  58.  Cowen LE, Steinbach WJ. Stress, drugs, and evolution: the role 

of cellular signaling in fungal drug resistance. Eukaryot Cell 
2008;7:747–64.

  59.  White TC, Marr KA, Bowden RA. Clinical, cellular, and molecu-

lar factors that contribute to antifungal drug resistance. Clin 
Microbiol Rev 1998;11:382–402.

 60. Marichal P, Koymans L, Willemsens S, et al. Contribution of 

mutations in the cytochrome P450 14-alpha-demethylase (Erg11p, 
Cyp51p) to azole resistance in Candida albicans. Microbiology 
1999;145:2701–13.

 61. Perea S, Lopez-Ribot JL, Kirkpatrick WR, et al. Prevalence 

of molecular mechanisms of resistance to azole antifungal agents 
in  Candida albicans strains displaying high-level fl uconazole 
resistance isolated from human immunodefi ciency  virus-
infected patients. Antimicrob Agents Chemother 2001;45:2676–
84.

 62. Sanglard D, Ischer F, Koymans L, Bille J. Amino acid substitu-

tions in the cytochrome P-450 lanosterol 14-alpha-demethylase 
(CYP51A1) from azole-resistant Candida albicans clinical iso-
lates contribute to resistance to azole antifungal agents. Antimi-
crob Agents Chemother 1998;42:241–53.

 63. Albertson GD, Niimi M, Cannon RD, Jenkinson HF. Multiple 

effl ux mechanisms are involved in Candida albicans  fl uconazole 
resistance. Antimicrob Agents Chemother 1996;40:2835–41.

 64. Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. 

Science 1996;274:546–67.

 65. Decottignies A, Goffeau A. Complete inventory of the yeast 

ABC proteins. Nat Genet 1997;15:137–45.

  66. Taglicht D, Michaelis S. Saccharomyces cerevisiae ABC proteins 

and their relevance to human health and disease. Methods 
Enzymol 1998;292:130–62.

  67.  Gaur M, Choudhury D, Prasad R. Complete inventory of ABC 

proteins in human pathogenic yeast, Candida albicans. J Mol 
Microbiol Biotechnol 2005;9:3–15.

 68. Dujon B, Sherman D, Fischer G, et al. Genome evolution in 

yeasts. Nature (Lond) 2004;430:35–44.

  69.  Nierman WC, Pain A, Anderson MJ, et al. Genomic sequence of 

the pathogenic and allergenic fi lamentous  fungus  Aspergillus 
fumigatus
. Nature (Lond) 2005;438:1151–6.

  70.  Loftus BJ, Fung E, Roncaglia P, et al. The genome of the basid-

iomycetous yeast and human pathogen Cryptococcus neoformans
Science 2005;307:1321–4.

  71.  Liu TT, Znaidi S, Barker KS, et al. Genome-wide expression and 

location analyses of the Candida albicans Tac1p regulon. Eukaryot 
Cell 2007;6:2122–38.

  72.  Rogers PD, Barker KS. Genome-wide expression profi le analysis 

reveals coordinately regulated genes associated with stepwise 

background image

24

acquisition of azole resistance in Candida albicans clinical iso-
lates. Antimicrob Agents Chemother 2003;47:1220–7.

  73.  White TC. Increased mRNA levels of ERG16CDR, and MDR1 

correlate with increases in azole resistance in Candida albicans 
isolates from a patient infected with human immunodefi ciency 
virus. Antimicrob Agents Chemother 1997;41:1482–7.

 74. Bennett JE, Izumikawa K, Marr KA. Mechanism of increased 

fl uconazole resistance in Candida glabrata during prophylaxis. 
Antimicrob Agents Chemother 2004;48:1773–7.

  75.  Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The 

ATP binding cassette transporter gene CgCDR1 from Candida 
glabrata
 is involved in the resistance of clinical isolates to azole 
antifungal agents. Antimicrob Agents Chemother 1999;43:2753–
65.

 76. Posteraro B, Sanguinetti M, Sanglard D, et al. Identifi cation 

and characterization of a Cryptococcus neoformans ATP 
binding cassette (ABC) transporter-encoding gene, CnAFR1
involved in the resistance to fl uconazole. Mol Microbiol 2003;47:
357–71.

  77.  Sanguinetti M, Posteraro B, La Sorda M, et al. Role of AFR1, an 

ABC transporter-encoding gene, in the in vivo response to fl uco-
nazole and virulence of Cryptococcus neoformans. Infect Immun 
2006;74:1352–9.

 78. Katiyar SK, Edlind TD. Identifi cation and expression of multi-

drug resistance-related ABC transporter genes in Candida krusei
Med Mycol 2001;39:109–16.

  79.  Lamping E, Ranchod A, Nakamura K, et al. Abc1p is a multidrug 

effl ux transporter that tips the balance in favor of innate azole 
resistance in Candida krusei. Antimicrob Agents Chemother 
2009;53:354–69.

 80. Arnaud MB, Costanzo MC, Skrzypek MS, et al. Sequence 

resources at the Candida Genome Database. Nucleic Acids Res 
2007;35:D452–6.

 81. Kohli A, Gupta V, Krishnamurthy S, Hasnain SE, Prasad R. 

Specifi city of drug transport mediated by CaMDR1: a major facili-
tator of Candida albicans. J Biosci 2001;26:333–9.

  82.  Nakamura K, Niimi M, Niimi K, et al. Functional expression of 

Candida albicans drug effl ux pump Cdr1p in a Saccharomyces 
cerevisiae
 strain defi cient in membrane transporters. Antimicrob 
Agents Chemother 2001;45:3366–74.

  83.  Franz R, Kelly SL, Lamb DC, et al. Multiple molecular mecha-

nisms contribute to a stepwise development of fl uconazole resis-
tance in clinical Candida albicans strains. Antimicrob Agents 
Chemother 1998;42:3065–72.

  84.  Sullivan DJ, Moran GP, Pinjon E, et al. Comparison of the epi-

demiology, drug resistance mechanisms, and virulence of Candida 
dubliniensis
 and Candida albicans. FEMS Yeast Res 2004;4:369–
76.

 85. Holmes AR, Lin YH, Niimi K, et al. ABC transporter Cdr1p 

contributes more than Cdr2p does to fl uconazole effl ux in fl uco-
nazole-resistant  Candida albicans clinical isolates. Antimicrob 
Agents Chemother 2008;52:3851–62.

  86.  Holmes AR, van der Wielen P, Cannon RD, Ruske D, Dawes P. 

Candida albicans binds to saliva proteins selectively adsorbed to 
silicone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 
2006;102:488–94.

  87.  Kojic EM, Darouiche RO. Candida infections of medical devices. 

Clin Microbiol Rev 2004;17:255–67.

  88.  Elving GJ, van der Mei HC, Busscher HJ, van Weissenbruch R, 

Albers FW. Comparison of the microbial composition of voice 
prosthesis biofi lms from patients requiring frequent versus infre-
quent replacement. Ann Otol Rhinol Laryngol 2002;111:200–
3.

 89. Cannon RD, Nand AK, Jenkinson HF. Adherence of Candida 

albicans to human salivary components adsorbed to hydroxylapa-
tite. Microbiology 1995;141:213–9.

  90.  Holmes AR, Bandara BM, Cannon RD. Saliva promotes Candida 

albicans adherence to human epithelial cells. J Dent Res 2002;
81:28–32.

  91.  Jenkinson HF, Lala HC, Shepherd MG. Coaggregation of Strep-

tococcus sanguis and other streptococci with Candida albicans
Infect Immun 1990;58:1429–36.

  92.  O’Sullivan JM, Cannon RD, Sullivan PA, Jenkinson HF. Identi-

fi cation of salivary basic proline-rich proteins as receptors for 
Candida albicans adhesion. Microbiology 1997;143(pt 2):341–8.

  93.  O’Sullivan JM, Jenkinson HF, Cannon RD. Adhesion of Candida 

albicans to oral streptococci is promoted by selective adsorption 
of salivary proteins to the streptococcal cell surface. Microbiology 
2000;146(pt 1):41–8.

  94.  Nobile CJ, Nett JE, Andes DR, Mitchell AP. Function of Candida 

albicans adhesin Hwp1 in biofi lm formation. Eukaryot Cell 
2006;5:1604–10.

 95. Zhao X, Daniels KJ, Oh SH, et al. Candida albicans Als3p is 

required for wild-type biofi lm formation on silicone elastomer 
surfaces. Microbiology 2006;152:2287–99.

  96.  Nobile CJ, Andes DR, Nett JE, et al. Critical role of Bcr1-depen-

dent adhesins in C. albicans biofi lm formation in vitro and in vivo. 
PLoS Pathog 2006;2:e63.

  97.  Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the 

dimorphic fungus Candida albicans is mediated by farnesol. Appl 
Environ Microbiol 2001;67:2982–92.

  98.  Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot 

JL. Investigation of multidrug effl ux pumps in relation to fl ucon-
azole resistance in Candida albicans biofi lms.  J  Antimicrob 
Chemother 2002;49:973–80.

 99. Alem MA, Oteef MD, Flowers TH, Douglas LJ. Production of 

tyrosol by Candida albicans biofi lms and its role in quorum 
sensing and biofi lm development. Eukaryot Cell 2006;5:1770–9.

100.  Bamford CV, d’Mello A, Nobbs AH, et al. Streptococcus gordonii 

modulates  Candida albicans biofi lm formation through interge-
neric communication. Infect Immun 2009;77:3696–704.

101.  Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorum-

sensing molecule infl uences  Candida albicans morphology. Mol 
Microbiol 2004;54:1212–23.

102. Douglas LJ. Candida biofi lms and their role in infection. Trends 

Microbiol 2003;11:30–6.

103. Ramage G, Vande Walle K, Wickes BL, Lopez-Ribot JL. Stan-

dardized method for in vitro antifungal susceptibility testing of 
Candida albicans biofi lms. Antimicrob Agents Chemother 2001;
45:2475–9.

104. Baillie GS, Douglas LJ. Effect of growth rate on resistance of 

Candida albicans biofi lms to antifungal agents. Antimicrob 
Agents Chemother 1998;42:1900–5.

105.  Chandra J, Kuhn DM, Mukherjee PK, et al. Biofi lm formation by 

the fungal pathogen Candida albicans: development, architecture, 
and drug resistance. J Bacteriol 2001;183:5385–94.

106.  Mateus C, Crow SA Jr, Ahearn DG. Adherence of Candida albi-

cans to silicone induces immediate enhanced tolerance to fl ucon-
azole. Antimicrob Agents Chemother 2004;48:3358–66.

107.  Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Mecha-

nism of fl uconazole resistance in Candida albicans biofi lms: 
phase-specifi c role of effl ux pumps and membrane sterols. Infect 
Immun 2003;71:4333–40.

108.  Perumal P, Mekala S, Chaffi n WL. Role for cell density in anti-

fungal drug resistance in Candida albicans biofi lms. Antimicrob 
Agents Chemother 2007;51:2454–63.

109. Won Song J, Shin JH, Kee SJ, et al. Expression of CgCDR1, 

CgCDR2, and CgERG11 in Candida glabrata biofi lms formed by 
bloodstream isolates. Med Mycol 2008;2008:1–4.

110. Garcia-Sanchez S, Aubert S, Iraqui I, et al. Candida albicans 

biofi lms: a developmental state associated with specifi c and stable 
gene expression patterns. Eukaryot Cell 2004;3:536–45.

111.  Andes D, Nett J, Oschel P, et al. Development and characteriza-

tion of an in vivo central venous catheter Candida albicans biofi lm 
model. Infect Immun 2004;72:6023–31.

112. Cannon RD, Lamping E, Holmes AR, et al. Candida albicans 

drug resistance another way to cope with stress. Microbiology 
2007;153:3211–7.

113. Al-Fattani MA, Douglas LJ. Biofi lm matrix of Candida albicans 

and  Candida tropicalis: chemical composition and role in drug 
resistance. J Med Microbiol 2006;55:999–1008.

114. Nett J, Lincoln L, Marchillo K, et al. Putative role of beta-1,3 

glucans in Candida albicans biofi lm resistance. Antimicrob Agents 
Chemother 2007;51:510–20.

background image

25

115.  Nobile CJ, Nett JE, Hernday AD, et al. Biofi lm matrix regulation 

by Candida albicans Zap1. PLoS Biol 2009;7:e1000133.

116.  LaFleur MD, Kumamoto CA, Lewis K. Candida albicans biofi lms 

produce antifungal-tolerant persister cells. Antimicrob Agents 
Chemother 2006;50:3839–46.

117.  Bachmann SP, VandeWalle K, Ramage G, et al. In vitro activity 

of caspofungin against Candida albicans biofi lms.  Antimicrob 
Agents Chemother 2002;46:3591–6.

118. Lazzell AL, Chaturvedi AK, Pierce CG, et al. Treatment and 

prevention of Candida albicans biofi lms with caspofungin in a 
novel central venous catheter murine model of candidiasis. 
J Antimicrob Chemother 2009;64:567–70.

119. Shuford JA, Rouse MS, Piper KE, Steckelberg JM, Patel R. 

Evaluation of caspofungin and amphotericin B deoxycholate 
against Candida albicans biofi lms in an experimental intravascu-
lar catheter infection model. J Infect Dis 2006;194:710–3.

120.  Jain N, Kohli R, Cook E, et al. Biofi lm formation by and antifun-

gal susceptibility of Candida isolates from urine. Appl Environ 
Microbiol 2007;73:1697–703.

121. Torosantucci A, Chiani P, Bromuro C, et al. Protection by anti-

beta-glucan antibodies is associated with restricted beta-1,3 
glucan binding specifi city and inhibition of fungal growth and 
adherence. PLoS One 2009;4:e5392.

122.  Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J. 

Harnessing calcineurin as a novel anti-infective agent against 
invasive fungal infections. Nat Rev Microbiol 2007;5:418–30.

123. Uppuluri P, Nett J, Heitman J, Andes D. Synergistic effect of 

calcineurin inhibitors and fl uconazole  against  Candida albicans 
biofi lms. Antimicrob Agents Chemother 2008;52:1127–32.