Ćwiczenie 13, Ćwiczenie 13


Ćwiczenie 13

Badanie mikrofal

0x08 graphic
1. Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych

A - fale radiowe bardzo długie,

B - fale radiowe,

C - mikrofale,

D - podczerwień,

E - światło widzialne,

F - ultrafiolet,

G - promieniowanie rentgenowskie,

H - promieniowanie gamma,

I - widmo światła widzialnego

Fale elektromagnetyczne zależnie od długości fali (częstotliwości) przejawiają się jako (od fal najdłuższych do najkrótszych):

Pasmo

Długość [m]

Fale radiowe

>104

Mikrofale

104 - 3·10-1

Podczerwień

7·10-7 - 2·10-3

Światło widzialne

4·10-7 - 7·10-7

Ultrafiolet

4·10-7 - 10-8

Promieniowanie rentgenowskie

10-13 - 5·10-8

Promieniowanie gamma

<10-10

Mikrofale to rodzaj promieniowania elektromagnetycznego o długości fali pomiędzy podczerwienią i falami ultrakrótkimi, zaliczane są do fal radiowych, przyjęto że odpowiada im zakres od 1mm (częstotliwość 300GHz) do 30cm (1GHz). W elektronice stosowanie sygnałów o częstotliwościach mikrofalowych oznacza, że rozmiary urządzenia (w najprostszym przypadku falowodu) są zbliżone do długości fali przenoszonego sygnału i opis obwodu przy pomocy elementów o stałych skupionych nie jest wystarczająco dokładny.

2. Podstawowe prawa optyki geometrycznej:

Odbicie to nagła zmiana kierunku rozchodzenia się fali na granicy dwóch ośrodków powodująca, że pozostaje ona w ośrodku, w którym się rozchodzi. Odbicie może dawać obraz lustrzany lub być rozmyte, zachowując tylko właściwości fali, ale nie dokładny obraz jej źródła.

0x08 graphic
Prawo odbicia - kąt odbicia jest równy kątowi padania, a promień padający, promień odbity i normalna leżą w jednej płaszczyźnie.

Prawo załamania

Zgodnie ze schematem promień (padający) P pochodzący z ośrodka 1, w punkcie S pada na granicę ośrodków, załamuje się na granicy i podąża jako promień załamany Z w ośrodku 2.

Prawo Snelliusa mówi, że promienie padający i załamany oraz prostopadła padania (normalna) leżą w jednej płaszczyźnie a kąty spełniają zależność:

0x01 graphic

gdzie:

n1 — współczynnik załamania światła ośrodka 1

n2 — współczynnik załamania światła ośrodka 2

θp — kąt padania, kąt między promieniem padającym a prostopadłą padania,

θz — kąt załamania, kąt między promieniem załamanym a prostopadłą padania.

Całkowite wewnętrzne odbicie to zjawisko fizyczne zachodzące dla fal (najbardziej znane dla światła) występujące na granicy ośrodków o różnych współczynnikach załamania. Polega ono na tym, że światło padające na granicę od strony ośrodka o wyższym współczynniku załamania pod kątem większym niż kąt graniczny, nie przechodzi do drugiego ośrodka lecz ulega całkowitemu odbiciu.

Kąt graniczny - P - promień padający pod kątem αgr, Z - promień załamany pod kątem β=90°, N - normalna padania. Światło padające na granicę ośrodków O1 i O2 pod kątem mniejszym od granicznego zostaje częściowo odbite a częściowo przechodzi do drugiego ośrodka (jest załamane). Jeżeli n1 to współczynnik załamania ośrodka O1, a n2 współczynnik załamania ośrodka O2 i n1 > n2 wtedy kąt padania α jest mniejszy niż kąt załamania β. Przy pewnym kącie padania αgr, zwanym granicznym, kąt załamania β jest równy 90º. Dla kątów padania większych niż αgr (zakreskowany zakres kątów na ilustracji) światło przestaje przechodzić przez granicę ośrodków i ulega całkowitemu odbiciu wewnętrznemu.

Obraz w soczewkach:

0x01 graphic
0x01 graphic

0x08 graphic
3. Zasada Huygensa (czytaj: hojchensa) sformułowana przez Christiaana Huygensa mówiąca, iż każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane są falami cząstkowymi i interferują ze sobą. Wypadkową powierzchnię falową tworzy powierzchnia styczna do wszystkich powierzchni fal cząstkowych i ją właśnie obserwujemy w ośrodku.

Z zasady Huygensa wynika, iż fale rozchodzą się izotropowo, a więc również wstecznie. W rzeczywistości nie jest to osiągalne, co zostało udowodnione empirycznie. Poprawkę zasady wprowadził Kirchhoff dodając współczynnik kierunkowy, równy:

0x01 graphic

Przejście fali między ośrodkami a Zasada Huygensa

Dyfrakcja to zjawisko fizyczne zmiany kierunku rozchodzenia się fali na krawędziach przeszkód oraz w ich pobliżu. Zjawisko zachodzi dla wszystkich wielkości przeszkód, ale wyraźnie jest obserwowane dla przeszkód o rozmiarach porównywalnych z długością fali.

Dyfrakcja używana jest do badania fal, oraz obiektów o niewielkich rozmiarach, w tym i kryształów, ogranicza zdolność rozdzielczą układów optycznych.

Jeżeli wiązka fal przechodzi przez szczelinę lub omija obiekt, to zachodzi zjawisko ugięcia. Zgodnie z zasadą Huygensa fala rozchodzi się w ten sposób, że każdy punkt fali staje się nowym źródłem fali, tak powstałe fale rozchodzą się jako fale kuliste a fala w każdym punkcie jest sumą wszystkich fal (interferencja). Za przeszkodą pojawią się obszary wzmocnienia i osłabienia rozchodzących się fal.

Zjawisko dyfrakcji występuje dla wszystkich rodzajów fal np. fal elektromagnetycznych, fal dźwiękowych oraz fal materii.

Interferencja to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których mogą rozchodzić się dane fale. W ośrodkach nieliniowych oprócz interferencji zachodzą też inne zjawiska wywołane nakładaniem się fal, w ośrodkach liniowych fale o jednakowej częstotliwości ulegając interferencji spełniają zasadę superpozycji.

Dla zjawiska interferencji, obszar rozchodzenia się fal składa się z fragmentów, gdzie zupełnie nie ma oscylacji i miejsc, w których jej amplituda ulega podwojeniu. Aby zaobserwować maksima i minima interferencyjne, konieczne jest, aby źródła fal były koherentne, czyli miały tą samą fazę, częstotliwość oraz długość.

4. Polaryzacja fali elektromagnetycznej

Określenie płaszczyzny, w której zmienia się pole elektromagnetyczne. Pole to można podstawić za pomocą wektorów E i H, które są prostopadłe do kierunku rozchodzenia się fali.

Polaryzacja fali ma zasadniczy wpływ na ustawienie anteny odbiorczej. Antena pionowa będzie odbierała fale spolaryzowane pionowo, pozioma - poziome.

0x08 graphic

Rys 1: Płaszczyzna polaryzacji

Na rys.1 przedstawiono obraz fali spolaryzowanej. O rodzaju polaryzacji stanowi wektor E. Jeżeli pozostaje on stale w płaszczyźnie poziomej, to fala nazwy się spolaryzowana poziomo, jeżeli pozostaje on w płaszczyźnie pionowej, to fala nazywa się spolaryzowana pionowo.

Kąt Brewstera jest to kąt padania, dla którego promień odbity jest całkowicie spolaryzowany liniowo równolegle do płaszczyzny rozdziału ośrodków.

Jeżeli na granicę ośrodków przeźroczystych pada światło niespolaryzowane pod takim kątem, że promień odbity i załamany tworzy kąt 90°, to światło odbite jest całkowicie spolaryzowane w płaszczyźnie równoległej do granicy ośrodków. Promień załamany jest spolaryzowany częściowo.

Wytłumaczenie zjawiska

W myśl fizyki klasycznej światło jest falą elektromagnetyczną, fala padając na ośrodek pobudza w nim elektrony do drgań. Drganie elektronów odbywa się w kierunku drgań wektora elektrycznego fali elektromagnetycznej, kierunek ten jest równoważny kierunkowi polaryzacji. Pobudzony elektron wypromieniowuje energię, ale nie może jej wypromieniować w kierunku równoległym do drgań. Dlatego gdy promień odbity ma kierunek prostopadły do promienia załamanego, to w świetle odbitym nie może być światła, które w promieniowaniu padającym ma kierunek drgań pola elektrycznego równoległy do kierunku promieniowania odbitego. Oznacza to, że światło odbite pod kątem Brewstera zawiera tylko światło o kierunku polaryzacji równoległym do płaszczyzny odbicia.

5. Metody wytwarzania mikrofal

Magnetron to lampa elektronowa, która generuje mikrofale.

Magnetron wraz z magnesami z kuchenki mikrofalowej. Jest to dioda w kształcie walca umieszczona w stałym polu magnetycznym w kierunku równoległym do osi walca. Do elektrod diody przykładane jest stałe napięcie.

Emitowane z katody elektrony można podzielić na przyspieszane lub opóźniane przez pole wysokiej częstości. W pracy magnetronu wykorzystywane są elektrony opóźniane, poruszające się po zwijającej się spirali i emitujące promieniowanie mikrofalowe. Najczęściej stosuje się bardziej złożone magnetrony wnękowe.

Stosowane w kuchenkach mikrofalowych magnetrony generują fale o częstotliwości 2,45 GHz, czyli długości 12 cm i mocy od 700 do 1600 W. Magnetrony używane w radarach generują fale o długości od 3 mm do 20 cm, (w zależności od radaru), moc ich sięga kilkudziesięciu kilowatów.

Klistron to lampa mikrofalowa z modulacją prędkości elektronów. Służy do wzmacniania i generacji przebiegów mikrofalowych (o częstotliwościach od setek megaherców w górę). Składa się z katody wysyłającej elektrony, zespołu elektrod ogniskujących wyemitowane elektrony w wąską wiązkę, anody przyspieszającej oraz przynajmniej dwóch rezonatorów i kolektora.

6. Wpływ pola elektromagnetycznego na organizmy żywe

Wpływ pola elektromagnetycznego na organizmy żywe jest rozpatrywany jako wpływ stałego pola magnetycznego, stałego pola elektrycznego, przepływu prądu elektrycznego przez organizm, wpływu zmiennych pól elektromagnetycznych czyli fal elektromagnetycznych.

Stałe pole magnetyczne

Wszystkie organizmy które żyją na Ziemi, podlegają działaniu ziemskiego pola magnetycznego. Ziemia jest gigantycznym magnesem, wytwarzającym wokół siebie stałe pole magnetyczne. Tkanka żywa jest na ogół mało podatna na działanie pola magnetycznego o takim natężeniu. Niektórzy badacze stwierdzają jednak, że silne pole magnetyczne ma wpływ na układ nerwowy u ludzi i zwierząt przejawia się opóźnionym czasem reakcji. Natomiast u roślin działanie silnego pola magnetycznego powoduje kurczenie się komórek i zmiany w błonach komórkowych.

U niektórych gatunków zwierząt np. owadów, ptaków lub ryb pole magnetyczne Ziemi odpowiada za orientację w przestrzeni (np. coroczne wędrówki ptaków do tych samych miejsc lęgowych różnie położonych geograficzne dla różnych gatunków). W organizmach tych zwierząt występują narządy pełniące funkcje biologicznych "kompasów" sprzężonych najprawdopodobniej z "zegarem biologicznym". Sztuczne zmiany wywołane np. przez przymocowanie do głowy ptaka miniaturowego magnesu, powodują utratę orientacji i chęć "podróży" w innym kierunku. Gdy izolowano rośliny i zwierzęta od wpływu ziemskiego pola magnetycznego, zaobserwowano zaburzenia ich rozwoju.

2



Wyszukiwarka